PROFESSIONAL ARCHITECTURAL AND ENGINEERING SERVICES FOR A

FACILITIES CONDITION ASSESSMENT

at the Monmouth County Special Services Complex
in the Township of Freehold

P-43-2018

Submitted by:

ATANE
Table of Contents

1. Cover Letter
2. Understanding of Scope of Work & Approach
3. Organization Chart & Key Personnel Resumes
4. References
5. Schedule
6. QA/QC Report
7. Forms
Cover Letter
May 19, 2020

Helen P. Fiore, Director of Purchasing
Division of Purchasing, County of Monmouth
Hall of Records, 3rd Floor
1 East Main Street
Freehold, NJ 07728

Dear Ms. Fiore:

ATANE is pleased and appreciative of the opportunity to present our proposal for Professional Architectural and Engineering Services for Facilities Condition Assessment at the Monmouth County Special Services Complex in the Township Of Freehold. The enclosed information presents our understanding of the work, our demonstrated qualifications, capabilities, and sincere desire to provide the Monmouth County with the necessary professional services to accomplish this project scope of work in a timely manner.

At ATANE, we understand the importance of good design, and how design can be instrumental in; establishing durability, controlling the cost of construction, and tracking life-cycle operating costs. We make smart choices by implementing design options that consider durable, local, readily available materials and equipment in a way that will enhance projects outcomes.

Our design philosophy is predicated on working together with our client as a seamless team, delivering projects of the highest quality on time and within budget. We strive to add value and respond to the programmatic and technological challenges of today's building environments. Our designs are never imposed. They are a result of a constant dialogue with our clients and project stakeholders.

For this project we have teamed with French Parrello Associates (FPA) to provide professional engineering services and Promatech, Inc. for cost estimating.

FPA has been providing professional engineering services to Monmouth County for over 20 years. FPA has various open contracts with the county and has adequate staffing to support work associated with this project. The firm’s technical and administrative staff are intimately familiar with the County’s procedures and policies.

Following is a list of FPA’s representative projects directly with the County:

- On-Call Professional Engineering Services for various Monmouth County Improvement Projects Consultant from 2015 – 2018;
- On-Call Geotechnical Consultant for Monmouth County (for the past 20 years);
- Peer Review for Mechanical/Electrical for the Prosecutor’s Storage Building located in Freehold, Monmouth County;
- Construction Administration Services in Connection with the Renovation of the Veteran’s Memorial Building located in the Borough of Freehold, Monmouth County;
- Inspection and Analysis of the Second Floor of the Social Services Building’s Access Floor located in Freehold in Monmouth County. The project consisted of an onsite inspection of the current conditions and evaluated live load calculations being placed upon the system by existing equipment and storage units.
As demonstrated in the approach to tasks, there will be virtually no learning curve for Team ATANE. We understand the two-fold mission set forth by this project. The first part of the project is to provide Monmouth County stakeholders with a comprehensive facility condition assessment (FCA) for the Monmouth County Special Services Complex to gain an understanding of immediate and future needs for repairs, maintenance, and facility upgrades. The second part of the project is to develop efficient means of the storage and handling of voting machines within the Special Services Complex for the Monmouth County Board of Elections.

Our full-service capability, with the support of our subconsultants, and our focus on the design and engineering for municipal facility projects, makes this contract a perfect match to our firm’s demonstrated qualifications and experience. We welcome this opportunity for Team ATANE to partner with Monmouth County, and to deliver project performance that exceeds all expectations.

We want to thank you in advance for your consideration of our firm. If you have any questions, comments, concerns, or need additional information, please feel free to contact me at; (212) 747-1997 x555 or javasquez@ataneconsulting.com

Respectfully,

ATANE

Jaime Vasquez
Vice President
Understanding of Scope of Work & Approach
SCOPE OF WORK

Project Understanding

We understand the two-fold mission set forth by this project. The first part of the project is to provide Monmouth County Engineering with a comprehensive facility condition assessment (FCA) for the Monmouth County Special Services Complex to gain an understanding of immediate and future needs for repairs, maintenance, and facility upgrades. Since the initial condition assessment includes an analysis of functions and space programming, this should permit the County to plan building improvements for both the physical plant and an efficient environment for the staff. The second part of the project is to develop an efficient means for the storage and handling of voting machines within the Special Services Complex for the Monmouth County Board of Elections. This project will create a more efficient means of distributing voting machines from the building, and free up space for other uses.

We identify the Facility Conditions Assessment, the Feasibility Study (sustainability), and the Strategic Plan as components of a capital asset management plan. We will be compiling the available information gathered into a useable database using non-proprietary software. The results of this assessment project will not only identify items requiring immediate attention, but will forecast costs for the recommended repairs, maintenance, and upgrades over a ten-year analysis period. Recommendation will be based on material condition, age, expected useful life (EUL), remaining useful life (RUL).

ATANE’s project approach and necessary project tasks are described below. The participation of ATANE key personnel is identified in the project organizational chart.

Project Approach

Task One – Facility Conditions Assessment (FCA)

1 – General Approach to the Facility Assessment Effort;
It is our intent to make this a coordinated and comprehensive effort to ensure that the assessment and subsequent report meets the needs of Monmouth County. To accomplish that, we will engage the stakeholders that work in and maintain the building to ensure that the needs are met for the immediate future as well as the long-term outlook. We will have a very important kickoff meeting to identify any existing documentation such as utility bills, drawings, previous condition assessment reports, and any ongoing maintenance issues. During that same meeting, we will attempt to identify the needs of each department that occupies space in the building to assist in the Strategic Plan development.

Following the kick-off meeting and prior to entering Special Services Complex, ATANE will review copies of the current Asbestos Hazard Emergency Response Act (AHERA) also known as an asbestos management plan that reports on the known ACM types and locations, as provided by the Monmouth County Engineer (MCE). Our team will examine the existing conditions of the building envelope, the interior elements, mechanical systems and components as well as the site. The assessment will also include a code review and confirmation of compliance with applicable codes. The Assessment report will be organized following the ASTM Uniformat II Standard, which lists the elements in a very organized manner to enable easier evaluation.
Prior to executing the building assessment site visits, an architectural team will be mobilized to make an initial site visit for the purpose of field measuring and preparing existing conditions drawing of the Special Services Complex. The drawings will be critical to perform and complete both Tasks 1 & 2 of this project. Drawings will include, but not be limited to, interior and exterior walls, doors and openings, windows, stairs, ramps and elevators, plumbing fixtures and room labels (numbers and names). Floor plans will indicate the extents of each department and common areas within the building. Concurrently with the architectural field measure effort, a land survey will be made to document existing conditions of the property upon which the Special Services Complex is located.

While the initial measurements and existing conditions are being documented, we will also meet with Monmouth County and other stakeholders to discuss the current usage of the building, any issues with the physical plant, issues with circulation or function, and potential future usage or expansion of spaces. This will be of great importance as we develop the strategic plan in coordination with MCE.

The existing condition drawings, both site and building, will be utilized by personnel performing the existing conditions survey to gather data and further identify building systems. The plans will be finalized by annotating deficiencies identified and included in the FCA report (Task 1), and used to prepare and present the schematic designs for Voting Machine Storage. The plans will also be used as an instrument to guide the Strategic Plan preparation. All drawings for both the site and the building will be provided in hard copy and AutoCAD 2016 format. Auto CAD drawings will be produced in accordance with AIA naming convention and layer management.

1.A – Assessment of the Building;

Architectural

- Survey all roofs throughout the facility to determine conditions, active and potential areas of leaks and remaining useful life (RUL). Roof survey will include all roof surfaces, edge details, intersections with parapets, all penetrations (e.g. piping, vents, ductwork), rooftop equipment curbs and dunnage, access stairs and any and all elements that interact with and impact the roof systems. Temporary removal of portions of walkway pads may be required in order to properly survey and document the roof conditions. Evaluate for safety and for fall protection and code compliance of railing around serviceable rooftop equipment.
 - The roof covers an area of approximately 113,000-Square Feet and is comprised of low-slope membrane and high-slope metal roofing at various elevations. Our team will develop a database of the roofed areas compiling data on material, age, condition, remaining useful life, comments on installation & safety risks, and costs for repair/replacement.
 - We are experienced in roof evaluations and fall protection methods, and hold current contracts to perform similar work on ConEd facilities.
 - Assess whether there is evidence of water infiltration throughout the existing roof system and building envelope.
 - Our team will review the area beneath the roof at the underside of deck, and observing areas above suspended ceiling tiles if possible.
• We understand that visible staining can be from a variety of causes, including roof leaks, and may need further investigation.

• Exterior facades, windows, exterior doors, roof
 • Exterior façade inspections are an ATANE specialty. We have performed façade inspection throughout the Northeast, including those mandated by law as in New York City and Philadelphia.

• Egress, stairs, ramps
• Building ingress and egress for all employees and visitors and shipping and receiving.

• Accessibility/ADA
 • An accessibility/ADA checklist will be used to review and document conformance with ADA.

• An environmental investigation of the property interior areas consisting of a visual assessment of existing conditions for the identification of any areas of potential concern that require future further investigation.

Structural
• Foundation (where readily visible)
• Structural system(s) supporting walls, floors, roofs, canopies, etc.

Plumbing/Fire Protection
• Water service and domestic booster system
• Chilled/hot water distribution
• Piping systems
• Fuel (gas/oil) distribution systems
• Fire water service and sprinkler system
• Prepare a Plumbing/Fire Protection Equipment Inventory including, but not limited to; domestic booster pumps, hot water domestic heater, and pumps. The inventory will indicate what areas of the building each unit is serving. Inventory will include an assessment of the make, model, age, and remaining useful life of the equipment based on assessed condition and the ASHRAE Life Expectancy Chart, and anticipated future replacement cost. It will also include availability of replacement parts based on the age of the equipment and current operating status of the manufacturer.

Mechanical/HVAC
• HVAC systems and controls throughout the Special Services Complex
• Specialized exhaust systems that may be found in storage or garage areas, etc.
• Building Management Systems
 • Prepare a Mechanical/HVAC Equipment Inventory including, but not limited to; air-handling units, rooftop HVAC units, boilers, exhaust fans, and elevators/lifts. The inventory will indicate what areas of the building each unit is serving. Inventory will include an assessment of the make, model, age, and remaining useful life of the equipment based on assessed condition and the ASHRAE Life Expectancy Chart, and anticipated future replacement cost. It will also include availability of replacement parts based on the age of the equipment and current operating status of the manufacturer.
 • Evaluate system efficiency as well as possibilities to improve system performance.

Electrical/Fire Alarm
• Electric distribution (primary and secondary)
• Fire detection/protection and electronic alarm system
• Alarm System (e.g. intrusion, perimeter doors)
• CCTV
• IT data distribution and the location of Main Distribution Frame (MDF) and/or Intermediate Distribution Frame (IDF) rooms
• Public address system(s)
• Emergency and exit lighting
• Prepare an Electrical Equipment Inventory including, but not limited to; transformers, generators, electrical feeder breakers, lighting, PA system, fire alarms, and low-voltage systems. The inventory will indicate what areas of the building each unit is serving down to panelboard level. Inventory will include an assessment of the make, model, age, and remaining useful life of the equipment based on assessed condition, and anticipated future replacement cost. It will also include availability of replacement parts based on the age of the equipment and current operating status of the manufacturer.

Land Survey
As-built Land Survey
ATANE has engaged French & Parrello Associates to prepare a limited topographic survey of approximately ±8 acres of the subject property known as Lot 8.02 in Block 78 located at 300 Halls Mill Road in the Township of Freehold, Monmouth County, New Jersey. The topographic survey will be based on new ground shots. The horizontal and vertical datum for this project will relative to NAD83 / NAVD88 established by Leica GNSS/GPS RTK Survey Systems using the Leica Smartnet and limited to the associated accuracies. The scale of the plan will be one (1) inch equals 30 feet, with a 1 foot contour interval. No overlap will be provided around the perimeter of the topographic area. For the purpose of this proposal, the topo will be limited to the easterly edge of Halls Mill Rd, the northerly edge of Willow Brook Rd and the paved parking areas to the north and east.
Rectified orthophotography, photogrammetric mapping, remote sensing, airborne/mobile laser scanning and other similar products, tools or technologies may be used as the basis for the showing the location of certain features (excluding boundaries) where ground measurements are not otherwise necessary to locate those features to an acceptable accuracy. If requested, the surveyor shall (a) discuss the ramifications of such methodologies (e.g., the precision and completeness of the data gathered thereby) with the client prior to the performance of the survey, and (b) place a note on the face of the survey explaining the source, date, precision, and other relevant qualifications of any such data.

Utilities shown on the plan will be based on above ground field locations, existing mapping, and any markout found in the field at the time of the survey.

Site/Civil Engineering

The initial project approach will include meeting with the Project Team to coordinate and discuss the Facility Condition Assessment and request copies of available utility mapping, surveys, utility bills and other existing conditions information. During this initial phase, we will file a NJ One-Call notice to have each of the applicable utility companies verify the location and size of the existing service lines to the building. We will visit the project site to review the existing site condition and assess the following site related items:

1. Parking and access driveway locations and configurations will be reviewed and assessed per the local ordinance requirements. We will review the number of parking spaces versus the required number of parking spaces per the local ordinance. Also, we will assess the number of handicap accessible spaces versus the required handicap accessible parking spaces per the Barrier Free ADA code. In addition, we will evaluate the existing route from the handicap parking spaces to the building and determine if the existing route is handicap accessible per the Barrier Free ADA code.

2. We shall review the Service and Loading locations and sizes to see if they are consistent with the Freehold township ordinance requirements. Also, based on discussions with Monmouth County, we will review the adequacy of the existing service and loading locations and size to meet the operational needs of the facility.

3. Based on the topographic survey, utility mapping provided by the County and information provided by the Sanitary Sewer and Water company, we will determine the size of the existing sanitary sewer and water service lines that currently service the existing building. We shall perform a capacity analysis of the existing sanitary sewer and water service lines to determine if they are sufficient for the operational needs of the existing facility.

4. Based on the topographic survey, we will perform an evaluation of the existing storm sewer and stormwater management system to determine if the existing storm sewer system has sufficient capacity to convey the 25 year storm event and whether the stormwater management system complies with the New Jersey Stormwater Management Rules.

5. Our Landscape Architect will visit the project site to perform an assessment of the existing grounds maintenance relative to the landscape plantings, trees, shrubs, lawn area, weeding,
exterior site furnishings, solid waste disposal, snow and ice removal, exterior site lighting, traffic control signs and general site features. We would request copies of the general grounds maintenance plan that is currently being implemented at the facility and provide our recommendations for improvements to the grounds maintenance.

6. We shall review the site access including the adjacent roadways, driveways, sidewalks and walkways for ingress and egress to the building for all employees, visitors, shipping and receiving. This assessment shall include the existing condition of the pavement, concrete, walkways, loading area, traffic control signage and striping.

7. We shall perform a visual assessment of the project site including the exterior of the site and the existing buildings to identify areas of concern that have potential for the need to perform further environmental investigations. This visual assessment of the existing conditions does not include any environmental investigations, sampling or testing.

Based on the results of the existing site condition assessment, we will identify the areas of the site that are not compliant with current codes, require maintenance, repair or replacement. The report will identify the anticipated useful life of the main site elements including pavement, concrete sidewalks, concrete curb, utilities, storm sewer system, landscaping, site lighting and signage. We shall prepare a strategic plan to identify the site improvements that need to be replaced in the near term, mid-term and long-term for capital planning. The report shall provide preliminary construction cost estimates for each of the main site improvements along with an order of priority for implementation.

Feasibility Study & Strategic Plan – Site Engineering

We will attend one (1) work session meeting with representatives of the Monmouth County and the project team to review and discuss the Feasibility Study and Strategic Plan.

1.B – Feasibility Study;

Included in the FCA will be a comprehensive feasibility study of energy conservation measures consistent with Monmouth County’s commitment to sustainable design, and the potential for new, innovative, emerging, and green technology. The study will first look at the recommended replacements and improvements in the Facility Condition Assessment and the alterations associated with the Voting Machine Storage to determine if there are opportunities for energy conservation measures to be implemented. Apart from that, however, the study will primarily evaluate options to reduce the energy usage and the impact of the site’s carbon footprint. This offers a variety of ways for the County to be a role model and leader in preservation of the environment.

Our firm has ample experience in the evaluation and design of sustainable features for buildings and sites, primarily encompassing the tenets of the LEED program to generate the concepts. There are a myriad of ways to accomplish the reduced carbon footprint with a minimal cost impact such as the implementation of green roof or solar photovoltaic in conjunction with the replacement of the roofing systems, utilizing geothermal capacity if there is ample room on the site to accomplish that, combined heat and power generation in instances where there is a continuous heating load,
the use of alternative fuels for boilers or fleet management, gray water reuse for flushing and irrigation, and any other cost-savings possibilities which can reduce utility costs. The commitment to sustainability will be reflected across all disciplines, even in the FCA. As an example, roof replacement might consider a low albedo roof or enhanced insulation to decrease energy costs if there is not a significant change in pricing. Where feasible, NREL and DOE modeling tools may be used to calculate the operating and capital economic impact.

1.C – Strategic Plan;
A strategic plan will be prepared to communicate the capital improvement plan for the Special Services Complex. The plan will outline Monmouth County’s near-term, mid-term and long-term capital projects based on our evaluation and recommendations for repairs of deficiencies, and our analysis of departmental adjacencies and functions particularly after building modifications to consolidate voting machine storage. It will define the actions required to achieve those goals and all of the other critical elements, including systems repairs and replacements, developed during assessment of the building systems, and the feasibility study. A key objective in the strategic plan is to make focused investments in the most cost effective approach while taking the public’s health and safety into consideration.

1.D – Final Facility Conditions Assessment (FCA) Report;
Based on input and comments from Monmouth County and our subconsultants, we will compile a final report including exhibits and construction cost estimates for your use in preparing the Final Facility Assessment Condition Report.

Based on the Consultant’s findings, meetings, and discussions with Monmouth County throughout the process, prepare a FCA Final Report which will include, but not be limited to the following:
* Executive Summary
* Building Assessment Report – This will document the existing conditions of all the building and site systems; Specifically:
 * Document the analysis that was performed and determine the causes for each observed deficiency;
 * Provide recommendations for repair of each deficiency, and;
 * Indicate recommended replacement dates based on anticipated life expectancy taking into consideration the existing conditions;
 * Identify probable cost estimates for correction of each deficiency.
* Measured drawings of the Special Services Complex indicating locations of found deficiencies.
* Feasibility Study Report - document each energy conservation measure that was analyzed and provide recommendations.
* Strategic Plan Report- Develop long-term and short-term repair, replacement or other mitigation action, with Associated Anticipated Cost Evaluation and Recommended Action, identifying required services (e.g. Design Documents, Construction Administration Services).
• Meeting Minutes appended to the report
• We will attend one (1) work session meeting with representatives of the Monmouth County and the project team to review and discuss the Final FAC Report.

1. E – Presentation of the FCA;

A draft report will be submitted to the County of Monmouth for a review and comment period as indicated on the project schedule. Following the review and comment period a formal presentation by the project key personnel will be made to county personnel and stakeholders. After the meeting a Final Report, including further revisions as a result of the presentation, will be submitted to the County of Monmouth.

Task Two – Voting Machine Storage

Concurrent with the FCA process, ATANE will, through meetings with the Monmouth County Board of Election and stakeholders, evaluate and gain an understanding of the current and future needs of Board of Elections for the storage of voting machines. Various methods for expanding storage space within the Special Services Complex will be explored including; feasibility of constructing either a mezzanine level, a second level within the existing high bay spaces, rack storage systems. Recommendations will be made for material handling systems; lifts, conveyors, automatic picking. The goal of the storage effort will be to reduce the voting machine storage footprint within the Special Services Complex, and to provide means for efficient and expeditious handling of machines during the short period of time of their county wide utilization. Task Two will be broken out into two phases consisting of the following segments.

2. A – Pre-Design and Programming for Voting Machines;

• Pre-Design and Programming
ATANE will complete a pre-design survey, review all available design documents for the facility, and conduct meetings with all stakeholders. We will also document the existing process of loading and unloading the voting machines, and identify opportunities to improve the process and storage.

• Needs Assessment
ATANE will meet with Monmouth County representatives to review the proposed project scope, review and summarize the required building functions in the scope of work areas, and will determine the best layout of building spaces to meet the requirements. We will also meet with the users and Monmouth County Engineering (MCE) to review the current operations and will then utilize this information to establish adjacencies and spatial relationships. We will provide draft summary reports and a final report upon Monmouth County’s review and comments.

• Building Program
Upon completion, review and final approval of the Needs Assessment Report, ATANE will then develop the Building Program. The written Building Program will then be submitted to MCE for review, final confirmation, and approval. ATANE will then create diagrammatic/schematic building plans based on these discussions and directives.
• **Construction Estimate**
Upon completion of the pre-design survey and document review we will prepare and submit a budgetary order of magnitude construction estimate.

2.B - **Schematic Design and Documentation for Voting Machines;**
A clear and concise set of documents, at the schematic design level, will be prepared showing a tangible benefit of reclaimed space from the stored machines, allocated to currently underserved function as determined during the Pre-Design effort. From the schematic design documents, users will be able to understand where the machines will be relocated, what spaces and functions are then affected, and what function or gain is achieved in the space from which the machines move. The Schematic Design will show how the space will be used during polling, during the balance of the year, and how the transition will happen.

Documentation will include order of operations diagrams and list selected material handling and storage equipment. Order of magnitude cost estimates to develop and construct the design will be prepared and submitted.

We will prepare and distribute meeting minutes to attendees and others for review and comment and to prepare and update a project schedule.

We will prepare two versions of the design for voting machine storage and submit for review by the County. Each iteration of the schematic designs will be revised for comment and resubmitted one time. The final schematic versions will show the relocation of any furniture and office equipment; required relocation of existing Mechanical, Electrical, Plumbing, Fire Protection systems, and Low Voltage systems.

Specific Conditions
The above proposal does not include the following items:

1. Application fees to the Municipality, Soil Conservation District and other regulatory agencies.
2. 3D Survey Scanning of the building and site
3. Environmental Investigations, sampling or testing (LSRP services)
4. Utility testing, flushing or video of existing utility pipes
5. Stormwater Management Design
6. Geotechnical Engineering and/or services
7. Any work, service and/or permitting that is not specifically identified within our scope of work.
8. Non-destructive and destructive testing

Although the testing processes identified are not included in this proposal, we will identify any recommended tests in the FCA. If needed, we can conduct the tests for an additional fee.
ELIZABETH-PORT AUTHORITY MARINE TERMINAL
CONDITION SURVEYS
Elizabeth, NJ

ATANE performed condition survey of Buildings 5020, 5030, 5110, and 5116 at the Elizabeth-Port Authority Marine Terminal as part of our 2016-2020 call-in contract for performance of facility condition surveys.

A team leader and an assistant team leader performed inspections of the buildings during March 2017, with all work following the PANYNJ’s “Guidelines for Condition Survey of Buildings.” Buildings covered by the assignment, comprising approximately 15,000 square feet of total footprint, house a bus shelter, comfort station, and utility structures. All buildings were in use during the inspection. The inspection team scheduled and coordinated with PANYNJ operations staff to obtain access to areas so that our work didn’t interfere with facility operations.

We conducted 100% visual and a minimum of 10% hands-on inspections; hands-on inspections were conducted of all structural members and elements to find and document deficiencies, and photographs were taken for each condition. For previously inspected buildings, ATANE verified each previous deficiency per PANYNJ guidelines and recoded changes, if still present.

We developed a comprehensive condition inspection report with findings broken down into four categories defined by PANYNJ: Immediate, Priority, Safety and Routine. All findings were documented in tables with description, repair recommendation, location and photo references provided for each condition. ATANE prepared drawings that showed the location of all deficiencies, location and direction of photographs included in the report, locations of hands-on inspections, and other required information.

We also provided personal protective equipment, all lighting gear and other devices and equipment required for the inspections.

Owner: Port Authority of New York & New Jersey
Location: Elizabeth, NJ
Contract Fee: $97,000
Start Date: March 2017
End Date: March 2017

Reference:
Steve Vecchio, P.E.
ATANE performed condition surveys of Buildings 205, 206, and 238 at the Port Newark Marine Terminal as part of our 2016-2020 call-in contract for performance of facility condition surveys.

A team leader and an assistant team leader performed inspections of the buildings during February 2017, with all work following the PANYNJ’s “Guidelines for Condition Survey of Buildings.” Buildings covered by the assignment, comprising approximately 35,000 square feet of total footprint, house a maintenance shop for container lifting equipment and tracks, offices, and utility structures. All buildings were in use during the inspection. The inspection team scheduled and coordinated with PANYNJ operations staff to obtain access to areas so that our work didn’t interfere with facility operations.

We conducted 100% visual and a minimum of 10% hands-on inspections; hands-on inspections were conducted of all structural members and elements to find and document deficiencies, and photographs were taken for each condition. For previously inspected buildings, ATANE verified each previous deficiency per PANYNJ guidelines and recoded changes, if still present.

We developed a comprehensive condition inspection report with findings broken down into four categories defined by PANYNJ: Immediate, Priority, Safety and Routine. All findings were documented in tables with description, repair recommendation, location and photo references provided for each condition. ATANE prepared drawings that showed location of all deficiencies, location and direction of photographs included in the report, location of hands-on inspections, and other required information.

We also provided personal protective equipment, all lighting gear and other devices and equipment required for the inspections.

Owner: Port Authority of New York & New Jersey
Location: Newark, NJ
Contract Fee: $97,000
Start Date: February 2017
End Date: February 2017

Reference:
Steve Vecchione, P.E.
The Philadelphia Housing Authority (PHA), the fourth largest housing agency in the US, owns more than 14,000 affordable housing units serving nearly 80,000 residents.

The city’s façade ordinance requires periodic inspections and reporting for all buildings of six or more stories and all buildings with appurtenances in excess of 60 feet in height. ATANE has been providing PHA with periodic inspections of exterior walls and appurtenances of six of its housing complexes. We coordinated with residents, PHA, and other governing bodies and maintained safe access to all buildings during the inspection process.

Observations were made hands-on, from swing-staging or mobile lifts of no less than 10% to as great as 35% of the area of the buildings’ facades. The balance of the façade area was visually assessed from grade using optical aids such as binoculars and telephoto zoom camera lenses.

Building features inspected included façade spalling and/or excessive cracking; brick pointing; caulking; stucco systems; window conditions and perimeter caulking; weep hole construction; metal lintel construction; appurtenances including downspouts, gutters, and fastenings; wall parging; and parapets, coping, window air conditioners, flower boxes, flags, and other elements protruding from the facade.

Repairs were prioritized as follows:

- Emergency—where a dangerous condition must be addressed immediately
- Needs urgent attention—where a condition needing correction did not represent an imminent danger of façade failure causing harm or damage below
- Needs maintenance attention—where a properly functioning component required maintenance in the next six to 60 months

The final report was submitted to the PHA and the Licenses and Inspection Division of the City of Philadelphia in compliance with the Philadelphia Façade Ordinance.

Owner: Philadelphia Housing Authority
Location: Philadelphia, PA
Contract Fee: $120,850
Start Date: March 2017
End Date: December 2018

Reference: Dana L. Parker
Planning & Development, PHA
PHILADELPHIA PARKING AUTHORITY PROFESSIONAL ON-CALL ARCHITECTURAL SERVICES
Philadelphia, PA

ATANE is providing on-call architectural services to the Philadelphia Parking Authority (PPA) as part of an effort to upgrade and modernize its facilities located throughout the city. Task orders may encompass various improvements to parking areas on the street, at the airport, and in garages and lots.

We are performing the necessary design and related services to meet the unique demands of each assignment, including: architecture; MEP; design and construction documents; land surveying; building scans; and civil, structural, environmental, and geotechnical engineering services. Our program manager is overseeing every phase of each assignment, from schematic design to contract administration, to ensure all work complies with agency specifications and is completed on time and on budget.

As the first task order under this contract, ATANE performed air quality monitoring and sampling for the renovation of the Independence Mall Autopark, a below-grade, fully enclosed garage in Center City featuring 612 spaces spread across three levels. We carefully studied the garage in order to determine and assess its existing conditions. Then we monitored the air on each level of the garage and took a total of nine samples from “hot spots.” After our samples were tested, we analyzed the lab results, performed a QA/QC review, and outlined our findings in a report for the PPA.

Our second task order involved using hand tools to sample asphalt for asbestos at a surface lot located at 8400 Seminole Street. Our HAZMAT specialist removed five samples from within the top 6 inches of the surface, which were analyzed in accordance with AHERA protocols. We prepared a final report for the PPA that summarized our findings, reflected all lab data, and identified sampling locations.

An upcoming task order—an existing conditions survey at the Independence Mall Autopark—will identify, address, and oversee any repairs being made to the garage’s building systems. ATANE will also procure geotechnical services for this complex, eight-part project. Our fourth task order will require an assessment of the building systems and site condition at the Gateway Parking Garage, located at 41 North 6th Street. Conditions noted during our assessment will be utilized to prioritize repairs.

Once completed, these upgrades will contribute to the economic vitality of Philadelphia by effectively managing and providing safe, convenient parking options to residents and visitors alike. Additional task orders under this contract will be determined by the PPA on an as-needed basis.

Owner: Philadelphia Parking Authority
Location: Philadelphia, PA
Start Date: May 2019
End Date: Ongoing

Reference:
William E. Kendig
Director of Construction Management & Capital Projects
wkendig@philapark.org

Our services addressed NYCHA’s entire housing portfolio, by each building type, each development, and consisted of using institutional knowledge, research, and architectural expertise to discuss within a Section 504 Accessibility Analysis Report, to determine what was required to achieve compliance with the VCA. The following issues were addressed:

- The pertinent requirements for 504 Accessibility;
- Assessment of the required number of Accessible units;
- Identification of the 504 compliance gap between required converted units versus units already converted;
- Recommendation of a 504 policy approach (by NYCHA housing development, by building, etc.);
- Recommendation of a 504 conversion standard; and
- Identification of a comprehensive scope of work for conversion of the current state to full compliance with the voluntary compliance agreement.

ATANE’s team of four inspectors included two NY State registered architects and two assistant architects, who inspected 26 developments, over 80 buildings including 205 occupied apartments, as well as all essential and non-essential non-housing program spaces in these developments. The essential non-housing program space included the sites, parking, playgrounds, and management offices. The non-essential non-housing program spaces included: Community Centers, Day Care, Senior Centers, Health Clinics, and Maintenance Offices. The team used a Uniform Federal Accessibility Standards (UFAS) Checklist as the outline for collecting existing conditions, also requiring laser measuring devices, walking tape measures, and laser levels. The duration of the inspections was 45 days.

The data collected was included in the final report along with an Executive Summary detailing our findings, categorization of work needed to meet the Section 504 VCA, recommendations, and ATANE’S Opinion of Probable Cost as an order of magnitude for NYCHA TO address the deficiencies within future capital planning years.

References:
Scott Groom, AIA, NYCHA
Director Office of Design

Owner: New York City Housing Authority
Location: New York City
Fee: $150,000
Start date: July 2014
End date: February 2015
ATANE is providing full design services for the replacement of the main and low roofs of 15 buildings in the Forest Houses development in the Bronx, NY. The design services include repairs to associated masonry and damages from water infiltration, as well as improving the stormwater collection system on each of the roofs.

ATANE is assessing and designing the main roof replacement for each building, which must meet New York City Energy Conservation Code requirements. Each existing roof is a gravel-ballasted, four-ply BUR system with very low insulation capacity. The new roofs will use a cold liquid-applied reinforced insulated system with an insulation value of R 30. ATANE is also bringing the stormwater collection systems on all roofs into compliance with New York City Plumbing Code requirements, providing a 1/4 inch per foot slope and overflow scupper at each existing roof drain. We are ensuring that the railing systems at the edges of each roof are compliant with New York City Administrative Building Code height, structural integrity, and stability requirements.

ATANE is also evaluating and designing repairs to the exterior entrance canopies, facades, and bulkhead walls at all 15 buildings. The existing door sills at all bulkhead doors are very low and will not accept the required insulation. We are designing new vestibules with high door sills to accept the thickness of the required insulation and provide required flashing. New three-riser metal stairs will be provided from the original level to the new roofing system elevation. All bulkhead doors, door frames, and hardware will be replaced. The existing bulkhead roofs do not have gutters or leaders. The scuppers, gutters, and leaders will be installed for proper stormwater collection.

Owner: New York City Housing Authority
Location: Bronx, NY
Construction Cost: $17.7 million
Start Date: August 2017
End Date: December 2018

Reference:
Teuta Dobi - NYCHA Project Manager
Teuta.dobi@nycha.nyc.gov
COMPRESSED NATURAL GAS (CNG) FUELING STATION
Middletown, New Jersey

PROJECT DESCRIPTION

FPA provided engineering services for the design of a compressed natural gas (CNG) fueling station in Middletown Township for New Jersey Natural Gas Company (NJNG). The CNG fueling station was one of the first public CNG stations to open in Monmouth County, providing consumers and fleet operators an alternative and cleaner burning fuel option.

FPA provided NJNG with survey services, geotechnical services, environmental permitting services, traffic engineering services, site plan design services, mechanical and electrical design services, structural engineering services and represented NJNG at the municipality level to advance the approval process.

The station is completed and is fully operational.
PROJECT HIGHLIGHTS
- Site Presented Design Challenges Due to Slopes, Wetlands, and Existing Underground Infrastructure Piping

CLIENT
New Jersey Water Supply Authority

CONTACT
Paul McKeon
t. 732.974.8383

COMPLETION DATE
2012

SERVICES
- Professional Consulting Services for Design & Construction

PROJECT DESCRIPTION
FPA provided professional consulting services for the design and construction of a 120' x 50' pre-engineered storage structure for the New Jersey Water Supply Authority located at 2041 Hospital Road in Wall, NJ. The building will be utilized for storage of equipment and materials. Also, the building shall be used as a work area to perform routine maintenance of their equipment.

One of the major design challenges of this project was the location of the storage building with consideration of the site constraints, which included steep slopes, freshwater wetlands and existing underground infrastructure piping. Also, the building needed to be located in close proximity to the existing administration building and have good access from the existing parking area. FPA's creative design included fill placement to manage the steep slopes, reinforced steel to protect the existing infrastructure and selecting a building location to meet the operational needs of NJWSA but located outside of the environmental constraints. All required permitting was obtained.
PROJECT HIGHLIGHTS
» Ferry terminal facility design
» 41-Acres
» Federally funded
» Historic sensitive design

CLIENT
City of South Amboy

CONTACT
Glenn Skarzynski, Business Administrator
t. 732.727.5437

SERVICES
» Geotechnical Engineering
» Site Design
» Surveying
» Permitting
» Site Planning
» Lighting Design
» Coastal Engineering
» Landscape Architecture
» Environmental
» Expert Witness Testimony

INTERMODAL TRANSPORTATION FACILITY
South Amboy, New Jersey

PROJECT DESCRIPTION
FPA was retained by the City of South Amboy to design an Intermodal Transportation Facility to accommodate up to three ferry vessels, with access via pedestrian, automobile and bus traffic, and including links to the NJ Transit Station in downtown. The project includes an access roadway, parking, wharf, terminal building and in-water improvements. The project is being designed and constructed using funds provided by the Federal Highway Administration (FHWA) via the New Jersey Department of Transportation (NJDOT).

FPA's design goals are to provide a safe, efficient, and attractive transportation facility, while paying tribute to the site history. The project design will incorporate on-site historical artifacts and other design elements as to express and pay homage to the historical roots of the site and the aesthetic significance, as well as to the functional performance required of the new Ferry Terminal Building.

Programming aspects of the ferry terminal building will include ticketing and administrative offices, waiting areas, food concession, commercial vendor spaces and restrooms, as well as significant information technology, privacy and security elements. We anticipate that the ferry terminal building will include interpretive displays, allowing it to also serve as an Interpretive Center, further portraying the site history. This project is part of a transformational redevelopment of the Raritan Bay Waterfront, with the City of South Amboy at the heart of the activities.

*Artistic rendering by USA Architects
PROJECT HIGHLIGHTS
» Assessment Investigation of all District Facilities
» Performed Drone Video Observations

CLIENT
Di Cara | Rubino Architects
Jackson Township Board of Education

CONTACT
Joseph Di Cara, AIA
t. 973.256.0202

COMPLETION DATE
2015

SERVICES
» Facility Assessment
» MEP Systems Investigation

JACKSON SCHOOLS FACILITIES ASSESSMENT
Jackson, New Jersey

PROJECT DESCRIPTION
The Jackson School District is a public school district, serving Kindergarten through Grade 12 located in Jackson Township, Ocean County, New Jersey. The district has six elementary schools, two middle schools, two high schools, administration building, and a transportation center. The district's schools have +9,000 students and +600 Teachers & administrators.

FPA staff performed a facility assessment investigation of all the district facilities and prepared final report for the district's long range facility plan. The facility assessment encompassed mechanical, electrical, & plumbing systems existing conditions. The final report detailed the observations, recommendations, and budget estimates for the district's planning.

FPA staff also performed drone video observations of the district's facilities, providing an overview of parking lots, building exterior elevations, building roofs, and athletic fields.
NEW HEALTH SCIENCE CENTER

AGENCY/OWNER
Rowan University - Rutgers
University Camden Joint Board of Governors

LOCATION
Camden, NJ

CLIENT
STV, Inc.
Timothy Mason, CCM
(610) 385-8200

PROJECT VALUE
$55 Million

PROJECT COMPLETION
2017

SERVICES PROVIDED
Cost Estimating

OVERVIEW
Promatech, Inc. was contracted by STV to provide cost estimating services for the new construction of the three-story 100,000-SF, $55M Science Center.

Scope of work includes laboratories, office space, cafeteria space, meeting space, electrical and HVAC systems.
OVERVIEW
Promatech, Inc. was contracted by USA Architects to provide cost estimating from Conceptual through Final Design for the new construction of a public safety building in Collingswood, NJ.

The scope of work consists of a 30,000-SF facility including office space, storage, gym/fitness center, kitchen/dining room, laundry, restrooms, and associated MEP.

Sustainable features include natural daylighting, site water management, efficient mechanical systems, energy efficient windows, and front garden area and rooftop vegetation to qualify for the “National Wildlife Habitat” certification.
Organization Chart & Key Personnel Resumes
PROFESSIONAL ARCHITECTURAL AND ENGINEERING SERVICES FOR FACILITIES CONDITION ASSESSMENT AT THE MONMOUTH COUNTY SPECIAL SERVICES COMPLEX IN THE TOWNSHIP OF FREEHOLD (RFP): P-43-2018

Key
(A) = ATANE Engineers, Architects & Land Surveyors, PC. (MBE Certified)
(P) = Promatech, Inc. (WBE Certified)
(FPA) = French Parrello Associates
* Indicates resume included

PRINCIPAL IN-CHARGE
Jaime Vasquez, LEED AP (A)*

PROJECT MANAGER
Mark Stettler, AIA, NCARB (A)*

MECHANICAL
Eric Czerw, PE, LEED AP (A)*

ELECTRICAL/FIRE ALARM
Amin Gomaa, PE LEED AP (FPA)*
Stewart Romhin (A)

LAND SURVEY
Thomas Ertle, PLS (FPA)*

SITE/CIVIL
Andrew L. French, PE (FPA)*

PLUMBING/FIRE PROTECTION
John D. Schoepfer, P.E., LEED AP (FPA)*
Harold O' Brien (A)

SUSTAINABILITY
David Price, PE, LEED AP (A)*

ARCHITECTURAL
Haris Khan, RA (A)*
Stephen Judge, RA (A)

STRUCTURAL
Jonathan Crawford, PE, S.E. (FPA)*
Esmail Mahbub, EIT (A)

SUPPORT TEAM
COST ESTIMATING
Jarek Staniszewski (P)*

CAD
Saribel Rodriguez (A)
Project Team Roles and Responsibilities

We have selected the follow project team members for the richness of their experience and commitment to project success. This project team brings a wealth of knowledge and experience specifically advantageous to the project at hand. While the resumes of these key persons follow, we introduce them here with the organization chart and provide an overview of their project roles in Task 1 – Facility Condition Assessment (FCA), and Task 2 – Voting Machine Storage.

Mr. Mark Stettler, AIA has been selected as Project Manager. Mark is licensed in the State of New Jersey and is the primary point of contact for the project team members, the client, and all other project participants and stakeholders. He is responsible for coordinating the work of all disciplines, maintaining communications with team members and stakeholders, and monitoring the project schedule. He has performed property conditions surveys of a wide variety of facilities. As Project Manager, his broad experience encompassing new construction, renovation/adaptive re-use, and condition assessments make him ideally suited to lead the FCA and Voting Machine Storage tasks. As Project Manager for the renovation of an institutional kitchen in the Rosary Manor Retirement Home, Mark saved the client more than $30,000 by reconfiguring existing space rather than pursuing the client’s proposal for a small yet costly building addition. Following staff interviews and space programming, a renovation plan was developed that improved the efficiency of the kitchen and included installation of the desired new food service equipment without requiring the need for physical expansion of the facility. When the Peabody Essex Museum needed a unique circulation path to deliver food serve equipment and catered meals to a second-floor function space. Mr. Stettler proposed the use of a vertical reciprocating conveyor (VRC), material handling equipment normally used in an industrial application, rather than installing the client requested freight elevator. The solution resulted in an elimination of the need for a total redesign of the HVAC systems serving their Asian Export Art Wing and in a savings of design and construction costs, minimizing project duration. This solution also eliminated the need for closing down of gallery spaces during construction and installation of the VRC.

The role of administrating QA/QC/Safety during the project is assigned to Mr. Richard Hallahan, PE. Richard has extensive experience in Quality Control programs on a variety of A/E projects. He will be responsible for checking completeness and multi-disciplinary coordination of the deliverables for Task 1 & Task 2. He has performed quality control services for projects at The Port Authority of NY & NJ, NYC Department of Design & Construction, New York State DOT. Mr. Hallahan is also the author of the ATANE Quality Manual which provides guidance for develop the project QA/QC plan in accordance with ISO9000:2015 principles.

The Land Survey will be performed by Mr. Thomas Ertle, PLS of FPA. Mr. Ertle will be responsible for collecting the existing site data and onsite features & locations; buildings and structures, roadways and parking, boundaries, topography, utilities, etc. Thomas has lent his skills to projects in Monmouth County, including a Bridges and R.O.W. surveys at various locations. He has provided professional land survey services for many municipal agencies throughout New Jersey.
Mr. Andrew French, PE of French & Parrello Associates (FPA) joins the team as Site/Civil Engineer. During his career, Mr. French has worked on various site plans, site feasibility investigations, educational, residential subdivisions, capital improvement, and roadway projects. Drew will be reporting on all aspects of the site features; roadways and parking, site drainage, and landscaping, and providing recommendations for site repairs, maintenance, and improvements. As Senior Vice President, he will be responsible for managing the flow all work and communications between FPA and ATANE, and Promatech.

Mr. Haris Kahn, RA. Is licensed in the State of New Jersey and will lead the architectural portion of the Task 1 – FCA, with additional support from ATANE architects and CAD technicians. Mr. Kahn will be a valuable asset during the assessment of the roofing and fall protection. He has broad experience in design or roof repairs and replacements and is currently involved in a fall protection project for ConEdison. Haris is well experienced in architectural design and will be the driving force behind the preparation of architectural drawings and coordinating the work of all other disciplines for Task 2.

The Structural Engineering effort will be led by Mr. Jonathan Crawford, PE of FPA. Jonathan will be providing visual assessments of the building’s structural system and recommendations for corrections of deficiencies encountered during the FCA. Mr. Crawford’s experience with ‘green’ roofs will be very helpful in developing strategies for the sustainability study. Jonathan will also be working on Task 2, supporting structural requirements of the voting machine storage schematic design effort to aid in determining the structural modifications required for the various storage and handling solutions.

Mr. Eric Czerw, PE will be handling the Mechanical/HVAC Systems. Mr. Czerw has extensive knowledge of construction and trade codes including New Jersey Building Codes, Energy Conservation Construction Codes of New Jersey, and ASHRAE Standards. Eric’s experience is well suited to the task of reviewing existing HVAC systems and making recommendations for unit replacements, maintenance, modifications, and upgrades to HVAC systems as part of capital improvements, and participating in the feasibility study for sustainability and energy conservation.

Electrical Engineering will be led by Mr. Amin Gomaa, PE, LEED AP of FPA. Amin has considerable experience in electrical engineering for variety of project types including those in the areas of site and interior lighting, convenience and emergency/standby power, and fire/security alarm systems for a wide variety of facility types. His experience in photovoltaic solar systems and sustainable design make him uniquely qualified to develop strategies to bridge from existing systems to building upgrades.

Our Plumbing/Fire Protection designer on this project is Mr. John D. Schoepfer, PE of FPA. He will responsible for the review of existing domestic, sanitary, and storm drainage plumbing systems. John is well versed in the design of a variety of fire suppression different systems, any of which may be appropriate for protecting life and property depending on the type of facility and what might be stored.
The responsibility for evaluation and potential implementation of **Energy Conservation and Sustainability** measures will be shouldered by **Mr. David Price, PE, LEED AP**. David is well experienced in alternate energy systems and energy conservation. He has demonstrated his skills on projects involving; solar/photovoltaic, energy conservation, energy modeling, carbon neutrality, greenhouse gas inventory, geothermal energy, and many other methods of reducing the carbon footprint of buildings. Mr. Price’s approach to sustainability incorporates the guidelines and principles of the U.S. Green Building Council’s LEED Certification program.

Mr. Jarek Staniszewski of **Promatech, Inc.** shall be performing the cost estimating necessary to meet the requirements of both Task 1 – FCA and Task 2 – Voting Machine Storage. Jarek has experience in estimating costs for new construction and renovation projects, and for phased construction where facilities remain occupied and operating.
Jaime Vasquez, LEED AP
Vice President and Lead Architect

Summary of Experience

Jaime Vasquez, RA, Vice President and Lead Architect in the Facilities Design Department, excels in the management of projects that require detailed coordination of design disciplines. He has extensive experience with agency and community interface, presentations, and obtaining approvals from agencies. His project experience includes the use and implementation of building and life safety codes, zoning ordinances, OSHA, and accessibility codes and standards; and design and management of public and private projects.

Jaime holds a B.Arch. from the Cooper Union School of Architecture and is a Registered Architect in the State of New Jersey (reactivation pending).

Engineering Firm, New York, NY – Architectural Practice Head/Lead Architect for all architectural projects in the New York office, including:

- **PATH Train Control Center** – Responsible for a building housing $30 million in systems for communications, train control, and security functions. The building incorporated security features such as hardening, redundant systems, and perimeter monitoring and control.

- **Port Authority of New York & New Jersey (PANYNJ)** – Responsible for architectural support for assignments under the PANYNJ Security Capital Program, such as building and infrastructure hardening and threat assessment.

- **New York City School Construction Authority (SCA), New York City** – Responsible for capital improvements at various locations.

Architectural Firm, New York, NY – Vice President, Architecture for directing and managing all aspects of the architecture department, including budgeting, strategic planning, staffing, and marketing. Responsible for oversight and management of projects, including ferry terminals, subway stations, historic bridge renovations, bus depots, and other transportation facilities. Projects included:

- **Intrepid Pedestrian Bridge, New York, NY**

- **Sloop Channel Bridge, Hempstead, NY** – Responsible for a context-sensitive design on a historic parkway.
• **125 Street Station, New York, NY** – Responsible for the subway station on the Lexington Avenue Line.

• **Hoboken Ferry Terminal, Hoboken, NJ** – Responsible for conceptual design for reinstitution of ferry service at the terminal, which is listed on the National Registry of Historic Places.

Democratic National Convention Committee (DNCC), New York, NY – Project Manager, Convention Hall Planning and Management for acting as a consultant for the DNCC for coordinating the planning of convention functions, including delegate and VIP seating arrangements and backstage area. Coordinated with media entities, the podium designer, Madison Square Garden, and the electrical and systems subcontractor on programmatic requirements. Reviewed the construction budget.

Architectural Firm, New York, NY – Senior Architect for designing and managing architectural projects, including:

• **New York City Police Department (NYPD) Erie Basin Evidence Vehicle Facility, Brooklyn, NY** – Responsible for a new administration building and rehabilitation of an existing 300,000-square-foot building. Obtained approval from the New York City Department of City Planning.

• **New York State Department of Transportation (NYSDOT), Northern State Parkway, Long Island, NY** – Responsible for architectural design of seven historic bridges and coordination of all aesthetic features. The fence and bridge designs have been adopted as NYSDOT standards for historic parkways.

Private Practice, NY – Architectural Consultant for projects, including a house addition in Stone Ridge, NY and a home interior renovation in Brooklyn, NY.
Richard Hallahan, PE
Quality Assurance Manager

Education
Bachelor of Science
Civil Engineering
Union College 1974

Professional Registrations
Professional Engineer
NJ 2014, #24GE02678400
NY 1981, #058487-1

Summary of Experience

Richard Hallahan, Senior Vice President, heads ATANE's Special Inspection Department and its state-of-the-art material testing laboratories. With ATANE since 2007, Rich oversees high-profile QA/QC projects.

Projects have included Quality Assurance Manager for the NYCT Spring Street Salt Shed, which involved concrete field, rebar, pile, soils, structural steel, structural bolting, flood zone, mechanical, and energy code compliance inspections. ATANE monitored, advised, directed, and reported on the actual field installations prior to and/or as they occurred. The project received the 2016 CIB Award of Merit. In addition to QA Manager, Rich was Lab Director and Special Inspection Director.

Rich is a Professional Engineer in New York and New Jersey.

Representative projects include:

Port Authority of New York & New Jersey (PANYNJ) 2015-2018 On-Call Construction Management and Inspection, New York/New Jersey – Department Manager for quality control services as part of an on-call construction management, on-site inspection and technical services four-year contract. We are staffing assignments with quality assurance and safety officers, office engineers, inspectors, engineers and additional qualified personnel to direct the work of contractors over the duration of the contract.

New York State Department of Transportation (NYSDOT) Brooklyn Queens Expressway Concrete Quality Control from 61st Street to Broadway, Queens, NY – Project Manager for field and laboratory testing to ensure the quality of concrete being used for the rehabilitation of the Brooklyn-Queens Expressway. Because of MPT considerations, the project was designed with high early-strength concrete in a number of critical locations. In order to meet this requirement, ATANE was available around the clock, performing field testing, preparing cylinders, and transporting them to the lab for curing and testing. Cylinder breaks were used to verify that the concrete had reached sufficient strength for traffic (pavement or structure). Our inspection and testing service provided field inspection, which included sampling; performing slump, air content, and temperature tests; curing and testing concrete cylinders, with special handling, as noted above, for high early-strength concrete; and fast-turnaround reporting of results.
New York City Transit (NYCT) Worldwide Consultant Technical Inspection Services, New York City – Project Manager for worldwide consultant technical inspection services including in-plant structural steel and miscellaneous materials inspection and quality auditing for both in-process and finished goods. Comprehensive material inspection services included material testing, test data review, witnessing of testing, and first article inspection. Services included plant audits and evaluation of manufacturing facilities, machinery, equipment, and quality systems. We also reviewed quality manuals and quality assurance programs. All quality audits adhered to ANSI/ASQC C1-1985, ISO 9000-1994, or ISO 9001-2000 standards.

Triborough Bridge and Tunnel Authority (TBTA) Cross Bay Bridge Rehabilitation Quality Control of Concrete and Asphalt, Queens, NY – Project Manager for plant, field, and laboratory testing to assure the quality of materials being used in the rehabilitation of the Cross Bay Bridge. ATANE called on a diverse inspection staff with a wide variety of skills and experience to meet the quality assurance requirements of the project, which included inspections at concrete plants supplying material to the project; inspections of concrete at the job site, including sampling, slump, air content, and temperature tests; laboratory testing of concrete cylinders for strength; inspections at asphalt plants supplying material to the project; job site soil density testing; and job site soil standard and modified Proctor compaction characteristics testing. Construction Cost: $58 million

Metro-North Railroad (MNR) Harmon Shop Replacement, Phase 5, Croton, NY – Quality Assurance Manager for construction supervision/inspection as a major subconsultant for Phase 5, Stage 1. The Harmon Main Shop, which occupies over 260,000 square feet, is the largest and oldest maintenance facility at MNR. The facility is used to inspect and perform scheduled preventive maintenance activities and unscheduled repairs for MNR’s fleet of diesel locomotives, push-pull coaches, and M-1, M-3, and R-7 electric cars. The program replaced a portion of the current Harmon Main Shop (Building 6) with a new state-of-the-art two-track, 10-car double-ended Consist Shop Facility. The work included demolition of the Blow Shed and demolition of the existing Recycling Center Facility. Stage 1 work included the completion of the final leg of the medium-voltage distribution 15-kV loop (also referred to as the 13.2-kV loop) and reconstruction of the site track to allow access to the proposed Consist Shop Facility. Rich is serving as QA Manager for material inspection/special inspection QA audits. Construction Cost: $100 million

New York City Department of Design and Construction (NYCDDC) Spring Street Salt Shed, New York, NY – Quality Assurance Manager for concrete field, rebar, pile, soils, structural steel, structural bolting, flood zone, mechanical, and energy code compliance inspections. Our services were required to ensure that field installations were adequately performed in accordance with contract specifications. New York City building codes require these services to be performed by third-party agencies registered with and meeting all requirements of the New York City Department of Buildings. As such, ATANE monitored, advised, directed, and reported on the actual field installations prior to and/or as they occurred. The project received the 2016 CIB Award of Merit. In addition to QA Manager, Rich was Lab Director and Special Inspection Agency Director. Construction Cost: $20 million

New York City Department of Environmental Protection (NYCDEP) Worldwide Technical Inspections & Concrete QA, NY – Department Manager for one of the largest, most complex, critical and comprehensive material testing contracts in the market today. ATANE’s role is vital to supporting quality construction materials for structural integrity and life safety. This on-call contract could activate up to 150 DEP locations in the five boroughs of New York City, in addition to Westchester, Putnam, Orange and Ulster counties in New York

RESUME
MARK STETTLER, AIA
Project Manager

➤ **Education**
Bachelor of Architecture, Wentworth Institute of Technology, Boston, MA, 2002
Associate of Applied Science, Architectural Technology, Northampton County College, Bethlehem, PA, 1989

➤ **Professional Registrations**
Registered Architect
NJ 2019, #21AI02118300
PA 2013, #RA406224
MA 2005, #20311
NCARB Certificate #60426

➤ **Professional Affiliation**
Member, American Institute of Architects

➤ **Training**
Certificate, Project Managers Boot Camp, PSMJ Resources, Inc.

Summary of Experience

Mr. Stettler has over 28 years of experience in building design, construction management and project management. He has served as Project Manager and Senior Architect on various multi-disciplined projects related to industrial, institutional, transportation, commercial office, commercial retail and residential for public sector clients and federal agencies as well as private clients. His areas of expertise include due-diligence studies, property condition assessments, ADA compliance surveys, telecommunications, secure facilities, industrial, commercial office, adaptive re-use, disaster recovery, rehabilitation/restoration, transportation, education, specialty pharmacy, clean rooms/laboratories, manufacturing, food service/food processing, retail, warehousing/distribution, and vehicle maintenance facilities. Mr. Stettler is proficient in various computer software programs including AutoCAD, BIM/Revit, Microsoft Project and Primavera Sure-Trak. Examples of his representative projects include:

Program Manager – for a current on-call contract with the Philadelphia Parking Authority (PPA) assignments are coordinating and managing project such as; existing conditions property surveys, parking garage renovations, repairs to parking at grade, environmental/HAZMAT assessments, peer reviews.

Senior Architect – Property Condition Assessments, Princeton Community Village for Princeton Community Housing, NJ. Project consisted of a multi-building apartment complex with 239 units in 26 buildings totaling 248,000 gross square feet on a 35.71-acre lot in Princeton, NJ.

Senior Architect – Property Condition Assessments, Skyhouse Channelside for AVR Realty, LLC. Project included a 26-story, 32-unit residential development with structured parking in Tampa, FL.

Senior Architect – Property Condition Assessments, Turnberry Isle for Turnberry Associates. Project entailed a multiple building, 408-guestroom, 786,000-square foot resort development with two golf courses and structured parking.

Senior Architect – Property Condition Assessments, 300 Shaker Road for Winstanley Construction Management, LLC. Project included a one-story, 445,597-square foot high-bay automotive parts warehouse/distribution development in Enfield, CT.

Senior Architect – Property Condition Assessments, Sotheby's for L & L Holding Company, LLC. Project entailed a 10-story, 406,000-square foot office/retail development in New York City, NY.

RESUME
Senior Architect – Property Condition Assessments, Beacon Harbor Point for GAIA Real Estate. Project included a 21-story twin tower, 240-unit residential development in Stamford, CT.

Senior Architect – Property Condition Assessments, Five Giralda Farms for Jones Lang LaSalle. Project included a four-story, 436,496-square foot, single tenant office development with structured parking in Madison, NJ.

Senior Architect – Property Condition Assessments, The Woolworth Building for BXMT Advisors, LLC. Project entailed a 60-story, 851,351-square foot multi-tenant office/residential development in New York City, NY.

Project Manager – Philadelphia Housing Authority (PHA) Façade Inspections, Philadelphia, PA. Project entails providing to PHA required periodic inspections of exterior walls and appurtenances for six of its housing complexes. Scope includes coordinating with residents, PHA and other governing bodies; and maintaining safe access to all buildings during the inspection process.

Project Manager/Architect of Record – Immaculate Conception, West Hampton Beach, NY. Responsible for performing an existing conditions survey of two structures on the campus of this beautiful old 1920’s parish on Long Island. All building systems, exterior and interior, of the Sanctuary and the Parish Hall were surveyed for condition, code compliance, and potential safety hazards. A report identifying and prioritizing areas requiring correction was produced. The results of a review of documents in files of the local building department and the county health department were appended to the report as well as cost estimates for required and recommended work.

Project Architect – Sunrise Assisted Living Facility, Glen Cove, NY. Conducted an existing condition building envelope survey prompted by severe water infiltration on the 10-month-old structure. Several deficiencies in the installation of the roofing system and flashings at penetrations were observed. Much of the defective roof was due to a lack of detailing provided by the design architect in the construction drawings. A report describing the findings and details of recommended corrective work was prepared and delivered to the building owner and the design architect for use in negotiating settlement for the cost of necessary repairs.

Project Architect – NorthEast Optic Network, Inc., Due Diligence Report, Providence, RI. Led a team of engineers performing due diligence property review of an existing building in Providence, Rhode Island. A selection of schematic designs for the building re-use and new construction for a NEON POP site was developed.

Project Manager – New Balance, Boston Manufacturing Relocation Study, Boston, MA. Responsible for a full discipline engineering and design team assigned the task of reviewing various properties for feasibility as manufacturing facility for New Balance Athletic Shoe Company. Criteria for programming were developed with the client’s in-house industrial engineering staff. Project involved developing schematic re-programming of existing buildings for reuse. Construction cost estimates for the rehabilitation of each specific property was also developed as part of the studies.

Project Manager and Architect – Verizon, TX. Scope included the study of four existing Northeast region warehouse buildings for use as Verizon fulfillment centers. The studies were specific to the fitness of the concrete floor slab for preferred racking and material handling methods and equipment, and the integrity of the building envelope.

RESUME
Summary of Experience
Mr. Czerw offers over 19 years of experience as a Senior Mechanical Engineer working on various projects related to the design of heating, ventilation and air conditioning (HVAC). Mr. Czerw has extensive knowledge of construction and trade codes including New Jersey and New York City Building Codes, Energy Conservation Construction Codes of New Jersey and New York State, IBC, IMC, NFPA-13, 45, 90A&B, and Ashrae Standards. He is also proficient in Trace 700, Elite, and DOE, Quest programs. Examples of his representative projects include:

Valentine Hall Chiller Replacement in Bordentown, Burlington County, NJ - Project Manager for New Jersey Department of Treasury, Division of Property Management and Construction (NJDPMC). The Johnstone Training School, operated by the Juvenile Justice Commission, rests on a 97-acre parcel of land that includes a four-building campus listed on the National and State Historic Registers. This project involves a chiller replacement for Valentine Hall, a 27,540-square-foot, brick-façade structure built in 1929 and partially rebuilt in 1986. Scope includes providing design and specifications for a new energy-efficient electric chiller system, taking into consideration restrictions applying to security, site parameters, facility personnel, staff, and residents as the building will be occupied during the construction phase. Construction Cost: $195,000

Martin Luther King High School, Mechanical Master Plan Design for School District of Philadelphia - Senior Mechanical Engineer The scope of work included providing mechanical and electrical engineering services to prepare design documentation and estimates for the replacement of the entire existing HVAC system at the 42-year-old Martin Luther King High School in Philadelphia. Construction Cost: $7.2 Million

Robinson Houses Boiler Replacement in New York, NY for New York City Housing Authority (NYCHA) - MEP Team Leader Work entails providing MEP design services—including architectural, landscape, civil and structural work—for the replacement of two boilers at Robinson Houses in East Harlem. The objective of the project is to provide residents with uninterrupted heat supply and potable hot water, reduce pollution through greenhouse gas reduction, and save energy. The project requires demolition of the existing boiler plants and domestic hot water equipment and design of heating and domestic hot water systems to be right-sized based on load calculations to reduce part-load cycling losses and initial equipment costs. The new boilers will be gas fuel only, not dual fuel. Construction Cost: $4.7 Million

Spectra Laboratories, Rockland, New Jersey - Senior Mechanical Engineer Served as a HVAC senior design engineer working on the conversion of the office building to blood testing laboratory. Construction Cost: $1,150,000

Office Building Princeton, NJ, Dow Jones - Mechanical Engineer Served as a design engineer performing HVAC work on 11,200 SF of office space that needed renovations. Construction Cost: $64,000
Stevens Institute of Technology, Main Gymnasium, Hoboken, NJ. - Mechanical Engineer Served on a HVAC design project assisting with renovations and re-balancing of air handling units that served the main gymnasium. Construction Cost: 98,000

M&M Mars Retail Group, Mt. Arlington, NJ. - Mechanical Engineer Designed several "Kathabar" dehumidification systems for refrigerated warehouses to reduce defrost cycle of the refrigerated racks total over 700,000 SF.

"Sysco" Food Services, Jersey City, NJ. - Mechanical Engineer Work included dry warehouse, cold storages with five different (5) temperature zones.

Manville High School, Manville, NJ. - Senior Mechanical Engineer Served as a HVAC senior design engineer working on the replacement of the ventilation system. Construction Cost: $98,000

Rutgers University, Busch Campus, Piscataway, NJ. - Senior Mechanical Engineer Served as a HVAC senior design engineer assisting with work pertaining to building renovations and HVAC equipment upgrades. Construction Cost: 283,000

Clifton Middle Schools, Clifton, NJ. - Mechanical Engineer Served as a HVAC design engineer for the Clifton Middle Schools working on a 160,000 SF facility for a new and completed HVAC system. Construction Cost: $320,000

GSE Continental Building Airport/Port Authority of New York & New Jersey, Newark, NJ - Mechanical Engineer Performed replacement and re-balancing for two air handling units serving the terminal regarding HVAC designs. Construction Cost: $146,000

Montgomery High School, Montgomery Township, NJ. - Mechanical Engineer Served as a HVAC design engineer working on a 420,000 SF facility for a new and completed HVAC system. Construction Cost: $1,146,000

Mott Elementary School, Trenton, Newark, NJ - Mechanical Engineer Served as a HVAC design engineer working on a 135,000 SF facility for a new and completed HVAC system. Construction Cost: $270,000

Cogeneration Power Plant, Lakewood, NJ for Essential Power, LLC. - Mechanical Engineer Served on a project for a Power Plant as an engineering aide with responsibilities that include assisting with the commissioning and start-up of 264 MW gas and fossil fuel turbine for the power plant. Construction Cost: $360M

New York City Department of Parks and Recreation (NYCDPR) - Senior Mechanical Engineer Natural Gas Services and Conversion of Oil-Fired Burners and Boiler Systems to Natural Gas-Fired Systems at Various Parks and Recreational Facilities in All Five Boroughs, NYC. Prepared detailed plans and specifications and designing layouts of new gas services for each building and formulating optimal design solutions for installation. Scope of work included designing the gas line connections and the replacement of existing burners, heating units, boilers, and water heaters with gas-fired burners, dual-fired burners, and appliances, as warranted. Construction Cost: $9 Million

Philadelphia International Airport (PHL), American Airlines (AA) Design and Engineering Services, Terminal Modernization Program Phase 1 Extended Design, Philadelphia, PA. - Senior Mechanical Engineer AA and the PHL are in the process of reconfiguring and streamlining its terminal and associated support facilities. Performed MEP and fire protection engineering services for the enabling projects in the terminal. These projects are part of a phased approach to constructing a new headhouse at Terminal B/C. Also provided mechanical, plumbing, and fire protection engineering for a storage warehouse adjacent to the existing American Airlines repair hangar in Cargo City. Construction Cost: $2 Billion

Gravesend Houses in Brooklyn, NY for NYCHA - Senior Mechanical Engineer Constructed in 1954, the 12.41-acre campus is home to approximately 1,680 residents in 634 apartments. During Superstorm Sandy, these apartments suffered considerable damage. Construction Cost: $115 Million

RESUME
Amin Gomaa, PE, LEED AP
Vice President, Building Design Services

Mr. Gomaa is the Technical Organization Leader for the Building Design Services Group. During his career, he has worked on various types of projects including new construction and renovations. The scope of his responsibility has covered power distribution design, lighting design and control, fire alarm design, emergency/standby power generation design, photovoltaic solar systems design, sustainable design, and project cost estimation.

Mr. Gomaa has been involved in projects both inside and outside the United States of America for building types including High-Rise, Hotels, Retail, Office Buildings, Data Centers, and Schools. His experience allows him to design the electrical infrastructure for projects up to 32MW capacity, such as Hyatt-Azulera in Cost Rica and Cabo San Cristopal in New Mexico.

Further, his experience includes designing and performing feasibility studies for various solar photovoltaic jobs with aggregate size of 30+ MW, with various capacities, ranging from roof mounted to ground mounted systems, as well as managing the equipment’s procurement and installation.

Mr. Gomaa has a wide experience with medium voltage design for systems up to 35 KV, including overhead distribution design, substation grounding, short circuit study, coordination and load flow study.

He has inspected various retail and education facilities to assess the electrical system post-storm conditions. In addition to inspecting building low voltage systems such as telecom, security and Fire alarm, he also prepared detailed assessment reports and recommendation including construction cost estimate.

PROJECT EXPERIENCE

Donald M. Payne Sr. Vocational Technical School, Newark, New Jersey
Electrical Team Leader responsible for the entire electrical design for the new school including service entrance, distribution, lighting, power, emergency power systems, low voltage systems and life safety systems. Weekly team and coordination meetings kept this large project moving forward and to a successful design conclusion. The project was competitively bid and resulted in under budget bids.

Freehold Regional High School Board of Education Energy Savings Improvements Plan (ESIP), Freehold, New Jersey
Project Manager responsible for the Regional High School District with 5 individual buildings totaling over 1,200,000 square feet of space. The plan was to reduce energy & operational costs. The work included lighting upgrades, heating plant replacements and upgrades, replacement of absorption chiller with gas-driven chiller, demand control ventilation, other mechanical system upgrades, and DDC automatic temperature control systems. The savings from the Energy Conservation Measures (ECM) is expected to over $1,000,000 + a year for the Regional School District. Mr. Gomaa served as the Electrical Task Leader for this project. Full implementation is expected during the first quarter of 2016.
US Route 1 Bridge Deck Replacements and Roadway Improvements (NJDOT)
Trenton, New Jersey
Electrical Team Leader responsible for the roadway and overpass lighting associated with the re-decking of US Route 1 Business Over New York Avenue and US Route 1 Business over the D&R Canal and US Route 1 Southbound. The Electrical Design consisted of the selection of new NJDOT standard pole mounted fixtures and the recircuiting of the new poles along the roadway and bridges.

Monmouth County Bridge N-17 Design Services
Township of Neptune, New Jersey
Electrical Team Leader responsible for bridge lighting associated with the rehabilitation of Bridge N-17. The Electrical Design consisted of the selection of new pole mounted fixtures and the recircuiting of the new poles along the roadway and bridge.

Delaware River Joint Toll Bridge Commission – District 3 Toll Facilities Emergency Standby Generators
Delaware Water Gap, Pennsylvania Mount Bethel, Pennsylvania Montague Township, New Jersey
Electrical Team Leader responsible for the new emergency standby generator design at three (3) Toll Bridge facility buildings. The electrical design consisted of the addition of the generators at each facility and electrical distribution system redesign required to accommodate the generators. Toll Plaza area roadway lighting and controls were refed from the new emergency electrical distribution equipment.

MetLife Stadium, AT&T Telecommunication Building
East Rutherford, New Jersey
Project Manager responsible for design of the electrical system for the new telecommunication building including interconnection to the MetLife network, installation of new generator, lighting, and fire alarm system.

Turtle Back Zoo Education Center
West Orange, New Jersey
Project Manager responsible for design of the electrical system for a new building, Scope of work included detailed design for electrical power distribution, lighting, convenience receptacles, fire-alarm system, and emergency generator.

Secaucus High School Renovation and New Addition
Secaucus, New Jersey
Project Manager responsible for design of the electrical system for a new building, Scope of work included detailed design for electrical power distribution, lighting, convenience receptacles, fire-alarm system, and emergency generator.

Morristown High School Renovation and New Addition
Morristown, New Jersey
Project Manager responsible for design of the electrical system for a new building, Scope of work included detailed design for electrical power distribution, lighting, convenience receptacles, fire-alarm system, and emergency generator.

Teaneck Board of Education
Teaneck, New Jersey
Project Manager responsible for design of lighting replacement for all school within the district to improve the lighting efficiency and archive high margins of obtain energy savings.
Thomas Ertle, PLS
Director of Survey, Land Surveying

Mr. Ertle has 33 years of experience in land surveying, including bridge construction & rehabilitation, large commercial site surveying encompassing thousands of acres, and over a million square feet of new construction. Mr. Ertle has a solid background in civil engineering, construction, and land surveying, with strong emphasis in department, project, and construction management. Previous projects include: various bridge contracts with the New Jersey Turnpike Authority, various bridge and widening projects with the New Jersey Department of Transportation, several counties, municipal contracts providing ROW surveys, easements, parcel mapping for taking or condemnation, township property surveys for foreclosure packages, private industrial sites such as Sands Casino, DeVry, Target stores, Costco, Walmart, Dicks, Olive Garden, World Trade Zone and Continental Insurance, new highway and bridge construction, waterfront development, military contracts at various military institutions such as Earl Navy Base and Lakehurst, site design and construction lay-out of strip malls, parking lots and new roadways, large boundary surveys containing 1,000+ acres, residential housing developments containing 1,000+ homes, residential lot surveys, large topographic surveys and numerous site remediation projects and many different varieties of construction layout including sewer and water main extension projects, expert testimony for third party boundary disputes, and steel as-built and construction layout. Mr. Ertle has previously been named as the Jackson Township Land Surveyor. Jackson Township is 103+ square miles, and the third largest township in the State of New Jersey. He also holds an FAA UAS Remote Pilot License, flying our UAV on various design projects.

His experience includes coordination of both technical and managerial phases of municipal and private surveying projects. He has performed all aspects of land surveying work such as American Land Title Association/ National Society of Professional Surveyors (ALTA/NSPS), Global Positioning System (GPS) surveys, hydrographic surveys, wetland locations and mapping, flood certifications, Federal Aviation Administration (FAA) 2C/1A surveys, GPS control surveys, High Definition Scanning (HDS) and Topographic surveys using traditional and UAS (Drone) technologies.

PROJECT EXPERIENCE

Passaic Valley Sewage Commission
Newark, New Jersey
Surveyor-In-Charge responsible for overseeing the newest high definition scanning (HDS) to Model G Sludge Decant Tank pumps, pipe galleries, electrical chases, and stairwells. The 3D imagery was modeled with Revit 2017 and used for a design and upgrade of the existing facility and processes.

Sands Casino
Bethlehem, Pennsylvania
Surveyor-In-Charge responsible for survey and provided an ALTA/NSPS survey for the entire compound encompassing approximately 130 acres of the former Bethworks (Bethlehem Steel) Founding turned Casino.
Various Beachfront Development Properties
Various Locations from Sea Bright to Long Beach Island, New Jersey
Surveyor-In-Charge responsible for establishing property boundaries including ancient pier and bulkhead lines, riparian grants and lines, NJ DEP Easements and Restrictions, tide land claim lines, sea wall locations, dune locations, and floodway elements.

Settlement and Monitoring of Kinder Morgan Fuel Storage Tanks
Carteret, New Jersey
Surveyor-In-Charge responsible for monitoring the settlement of several large above ground fuel storage tanks utilizing High Definition Scanning (HDS) to produce a 3D model of the tanks, piping, equipment, and topography to determine location, position, settlement of tanks, surrounding features, and containment volumes.

Princeton Healthcare Heliport
Plainsboro, New Jersey
Surveyor-In-Charge responsible for surveying of a new heliport, being designed for emergency services where we utilized High Definition Scanning (HDS) to determine best flight paths for helicopter approaches. Our HDS survey resolved various issues with building heights, utility poles and wires, trees, and surrounding topography.

Atlantic County Landfill
Egg Harbor Township, New Jersey
Surveyor-In-Charge responsible for providing annual topographic mapping to determine volume, capacity, and yearly changes.

Replacement of the Nacote Creek Bridge
Port Republic, New Jersey
Surveyor-In-Charge responsible for establishing the right-of-way corridor for the reconstruction of the Alton M. Bowen Bridge over the Nacote Creek in the borough of Port Republic, Atlantic County, NJ. Responsible for establishing the right of way, providing horizontal and vertical as-builds of the existing swing bridge, location of wetlands, utilities and 3D imagery scanning.

Mansfield Warehouse and Distribution Center, Mansfield, New Jersey
Surveyor-In-Charge responsible for surveying of a 190 acre site which incorporated over 7 miles of ROW route surveying for new waterline and sanitary and an intersection existing conditions/ROW improvement plan for Burlington County.

Replacement of County Bridge No. G1403 on Lloyd Road over a Tributary to Indian Grove Brook
Borough of Bernardsville, New Jersey
Surveyor-In-Charge responsible for establishing the right-of-way, providing horizontal and vertical control, providing horizontal and vertical as-builds of the existing bridge and locations of wetlands and utilities through environmentally sensitive areas.

Replacement of Ocean County Bridge No. 1530-004, Mayetta Road Bridge
Stafford Township, New Jersey
Surveyor-In-Charge responsible for establishing horizontal and vertical control for the road corridor and alignment for a new replacement bridge.

Reconstruction of Bridge U-45 on Arneytown-Hornerstown Road over Crosswicks Creek
Township of Upper Freehold, New Jersey
Surveyor-In-Charge responsible for establishing the right of way, horizontal and vertical control for the site and preparing an existing conditions plan of the bridge to be replaced three out of the four corners of the bridge are Green Acres encumbered and the entire project was designed without requiring the diversion of Green Acres property.
Andrew L. French, PE
Senior Vice President, Land Development

Mr. French serves as Senior Vice President and the Technical Organization Leader of the Land Development Group at FPA. Mr. French is responsible for managing the technical services provided by Land Surveying, Site Engineering and Landscape Architecture at FPA. His management responsibilities include client relations, business development, quality control, mentoring staff and project implementation.

Mr. French has extensive experience in the planning, management, and engineering design of various land development and public improvement projects. He has successfully served as Principal-in-Charge and/or Project Manager on numerous projects at all levels of design and construction phases from conceptual planning to final design and approval process and then through construction.

During his career, Mr. French has worked on various site plans, site feasibility investigations, educational, residential subdivisions, capital improvement, and roadway projects. Mr. French’s experience includes the preparation of various engineering, environmental, and construction permits including New Jersey Department of Environmental Protection Freshwater Wetlands, Flood Hazard Area, Waterfront Development, Dam Safety, the Adopted Coastal Permit Program Rules and Coastal Zone Management Rules, Treatment Works Approval and water main extensions, New Jersey Department of Transportation highway occupancy permits, access driveway permits, and utility/road opening permits, and municipal and county planning board approvals.

PROJECT EXPERIENCE

Basketball Courts at Wall Municipal Complex
Wall Township, New Jersey
Principal-In-Charge responsible for the management and preparation of Construction Plans for bidding and construction of two full size regulation basketball courts at the Wall Township Municipal Complex as part of the 2015 Monmouth County Open Space Grant Program. The project included two full size regulation basketball courts, four reduced size basketball courts, LED Sports Lighting for extending use during the evening and stormwater management system to control the runoff from the project.

Clayton Concrete Plant
Woodbridge, New Jersey Principal-In-Charge responsible for the management and preparation of Construction Plans for the new concrete manufacturing plant for Clayton Concrete Company. The project consisted of a new concrete plant on a site that is located on the Raritan River and has an elevation difference of greater than 80 feet from the front of the property to the river. The concrete plant facility includes a pre-engineered building of approximate 90 feet in height to enclose the concrete manufacturing equipment. The project also includes 1,500 sq. ft. recycling building, a garage with 3 service bays for equipment maintenance and a small office building. FPA provided full engineering services for this project including land surveying, geotechnical, site engineering, electrical, plumbing, HVAC, structural and construction inspection services.
Riverview Residential Development
Plainsboro Township, New Jersey Principal-In-Charge responsible for the management and preparation of Site Construction Plans for the Riverview Residential Development which consists of 260 residential apartments and 45 townhouse units on approximately 38 acres in Plainsboro, New Jersey. The project is located on the Millstone River and required obtaining approval from NJDEP for Flood Hazard Area and Wetland Permitting, Delaware Raritan Canal Commission, Freehold Soil Conservation District and Middlesex County Planning Board. FPA provided land surveying, geotechnical, environmental, site engineering and construction inspection services for this project.

7-11 Convenience Store with Gas Station
Franklin Township, New Jersey Principal-In-Charge responsible for the management and preparation of Site Plans for the proposed 7-11 Convenience Store with Gas Station and a retail center of 10,000 square feet of commercial use. FPA successfully obtained site plan approval, use variance approval and permits from Delaware Raritan Canal Commission, Soil Conservation District and Somerset County Planning Board for this project. FPA provided land surveying, geotechnical, site engineering and construction inspection services for this project.

The Enclave Residential Development
Borough of Tinton Falls, New Jersey Principal-In-Charge responsible for the management and preparation of Site Construction Plans for the The Enclave Residential Development which consists of 46 townhouse units and 9 affordable apartment units on approximately 13 acres in Tinton Falls, New Jersey. The project included a clubhouse with pool and bocce courts, three detention basins, a pump station and water main infrastructure improvements. FPA provided land surveying, geotechnical, environmental, site engineering and construction inspection services for this project.

Camp Evans Army Base
Wall Township, New Jersey Project Manager responsible for the management and preparation of Demolition Documents for bidding and demolition of the three (3) existing buildings at Camp Evans to facilitate the use of the property as a Recycling Facility for the Township of Wall. Based on our assessment of the buildings, it was determined that the buildings were not structurally sound and therefore wet demolition techniques had to be used to safely demolish the existing buildings.

Early Childhood Educational Facility Site Feasibility Investigation
Perth Amboy, New Jersey Project Manager responsible for the preparation of demolition documents and the management of site investigation services related to the land acquisition approval for the new school site in the City of Perth Amboy for The School Construction Corporation. The site investigation services included environmental and geotechnical assessments, site constraint analysis, traffic analysis, permitting analysis, and preparation of site feasibility report.

H8 Wilson Elementary School Site Feasibility Investigation
Camden, New Jersey Project Manager responsible for the preparation of demolition documents and the management of site investigation services related to the land acquisition approval for the new school site in the City of Camden for The School Construction Corporation. The site investigation services included environmental and geotechnical assessments, site constraint analysis, traffic analysis, permitting analysis, and preparation of site feasibility report.

New Jersey Water Supply Authority Storage Building
Township of Wall, New Jersey Project Manager responsible for the design and construction of a 120’ x 50’ pre-engineered storage structure for the New Jersey Water Supply Authority located at 2041 Hospital Road in Wall, NJ. Also, the building shall be used as a work area to perform routine maintenance of their equipment. One of the major design challenges of this project was the location of the storage building with consideration of the site constraints, which included steep slopes, freshwater wetlands and existing underground infrastructure piping. Also, the building needed to be near the existing administration building and have good access from the existing parking area. FPA’s creative design included fill placement to manage the steep slopes, reinforced steel to protect the existing infrastructure and selecting a building location to meet the operational needs of NJWSA but located outside of the environmental constraints.
John D. Schoepfer, PE, LEED AP
Vice President, Building Design Services

As the Mechanical Engineering Department Manager, Mr. Schoepfer brings over 17 years of experience in the engineering design of mechanical and electrical systems involving additions and new construction as well as renovations for office, retail buildings, fitness and data centers, and educational and health care facilities. His duties have included project management, site selection feasibility studies, lease review, load calculations, system selection, equipment sizing and layout, mechanical and computer aided drafting, specification writing, construction cost estimating, field surveying and all aspects of construction administration.

His experience with HVAC systems involves air and water-cooled chillers, open and closed system cooling towers, steam and hot water generating boilers, constant and variable volume air and water systems, packaged and split systems, kitchen exhaust and makeup systems, radiant heating, and energy recovery. His electrical experience includes switchgear, distribution and critical power systems involving diesel and natural gas generators, parallel switchgear and Uninterruptible Power Supply (UPS) systems. His fire protection experience consists of wet and dry sprinkler systems including pre-action systems ranging up to Extra Hazard Group One (EH1) as well as electric and diesel fire pumps. His plumbing experience includes domestic hot and cold-water systems, sanitary and vent piping systems, sewage ejector pumps and natural gas piping serving standby generators in addition to HVAC and kitchen equipment.

Mr. Schoepfer is also proficient in envelope analysis, energy modeling, LEED™ letter template preparation, and utility rebate documentation.

PROJECT EXPERIENCE

Citigroup Global Wealth Management
New York, New York
Project Manager and Senior Mechanical Engineer responsible for mechanical, electrical, plumbing and fire protection serving 230,000 sf over thirteen floors consisting of executive office and conference space, kitchen and dining facilities, television studio, data center and IT support space. Infrastructure included primary and secondary condenser water systems with critical room air conditioning, dedicated television studio remote air-cooled chiller, 10th floor diesel emergency generator, uninterruptible power supply (UPS) system and 50-story MI cable riser to support high density power requirements.

KPMG LLP - Various Fit-up Projects
Northeast Region
Project Manager and Senior Mechanical Engineer responsible for mechanical, electrical, plumbing and fire protection fit-up and infrastructure design and construction for over 1.5 million sf of space at over 10 locations throughout the northeastern United States. Multiple building reviews have also been provided for site selection not only for code deficiencies but also for lease negotiations with landlords. Projects included executive office space, conferencing centers, training rooms and cafeteria designs.
Rudin Management Company, Inc. – Call-in Contract for Multiple Buildings
New York, New York Project Manager and Senior Mechanical Engineer responsible for mechanical and electrical modifications as on call engineers for over 1.5 million sf for tenant spaces at: 110 Wall Street; 55 Broad Street; 80 Pine Street; One Whitehall Street; 355 Lexington Avenue; 560 Lexington Avenue; 641 Lexington Avenue; 345 Park Avenue; 41 Madison Avenue and 415 Madison Avenue.

277 Park Avenue, 37th and 38th Floors, Home Office Build-Out
New York, New York Project Manager and Senior Mechanical Engineer responsible for mechanical and electrical engineering services for approximately 50,000 sf of tenanted space located at the 277 Park Avenue office building. Provided complete HVAC, electrical, fire alarm, sprinkler and plumbing drawings and specifications to serve executive conference center, private and open office space as well as supporting IT space and core and guest restrooms. Supplemental air conditioning to support the conference center, café and IT spaces was also included.

Liberty Mutual
New York, New York Project Manager and Senior Mechanical Engineer responsible for mechanical, electrical and fire alarm engineering services for the 29th and 30th floor of 1 Battery Park Plaza with an approximate 25,000 sf occupancy of space. All mechanical, electrical and fire alarm services were performed based on RFP request from the client. New A/C units were installed and existing units were modified to support the new load.

Vodafone, 560 Lexington Avenue, 8th/9th Floor - Office Expansion
New York, New York Project Manager and Senior Mechanical Engineer responsible for mechanical and electrical engineering services for approximately 21,000 sf of tenant space on the 8th floor and 9th floors. Service included design for modification of the existing air distribution system, two (2) supplemental water cooled air conditioning units to provide air conditioning for one (1) IT Room on each floor and three (3) additional water-cooled air conditioning units to provide supplemental cooling for the workstation spaces; additional electrical infrastructure to support high density workstations; client experience center including video wall and expandable conference space with moveable partitions.
David Price, PE, LEED AP
Vice President/MEP Group Leader

> **Education**
> Bachelor of Science, Electrical Engineering, Drexel University, Philadelphia, PA 1994

> **Professional Registrations**
> Professional Engineer NJ 2014, #24GE04629800; MD #34014; PA 2000, #PE055637E;

> **Certifications**
> LEED AP, 2006
> MTA NYC Transit Track Safety Certification, 2016

> **Professional Associations**
> Institute of Electrical and Electronics Engineers

Summary of Experience
David Price, MEP Group Leader within the Architecture/Facilities Design Department, joined ATANE in 2016 with extensive experience in the consulting engineering industry. Over the course of his career, David has managed large, multidisciplinary projects that often required close interaction with MEP engineers, architects, planners, contractors and other subconsultants. He has considerable experience in federal, educational, and commercial projects that involve low- and medium-voltage distribution, communications infrastructure, intelligent transportation, fire alarm, security, CCTV, paging, mass notification, and photovoltaic elements.

His managerial approach is to focus on teamwork, accuracy and effectiveness. He believes that communication with team members as well as clients is important to convey goals and expectations on an ongoing basis. In addition to leading successful teams, David has managed the financial functions of the group, including budgeting, staffing, invoicing, and proposal preparation with pricing and assisted with accounts receivables.

Representative Project Work Follows:
Liberty Property Trust Axalta Philadelphia Navy Yard LEED Fundamental and Enhanced Commissioning and Energy Modeling, Philadelphia, PA — Team Leader for LEED fundamental and enhanced commissioning and energy modeling services for a 175,000-square-foot, two-story core and shell building in the Philadelphia Navy Yard. Commissioning involved site lighting, building exterior-mounted lighting, ventilation of two stair towers, and interior code required egress lighting. The Philadelphia Navy Yard is a 1,200-acre dynamic and urban development, offering the region a unique and centrally located waterfront business campus committed to smart energy innovation and sustainability. The Navy Yard is home to more than 12,000 employees and 152 companies in the office, industrial, manufacturing, and research and development sectors, occupying 7.5 million square feet of real estate in a mix of historic buildings and new high-performance and LEED-certified construction.

Lead Electrical Engineer — Responsible for electrical design for over 80 MW of solar projects ranging in size from 100 kW to 15 MW. Designs were for a variety of facilities including landfills, parking garages, and rooftops. Answered RFIs, reviewed shop drawings, and revised documents when required for construction changes.

Fleet Maintenance Building, Civic Center, Cultural Arts/Community Center, Public Works Building, and Fire Department Headquarters, Solar Array Project, Ocean City, NJ — Lead Electrical Engineer for one of the largest municipal installations of solar arrays in New Jersey including over 2,080 solar panels on five city-owned buildings.
The roof-mounted panels will result in 454 kW of photovoltaic power. A computerized system allows the city to track the power generated by this project. Construction Cost: $4 million

Luzerne County, PA – Lead MEP Designer for preparing energy efficiency and conservation strategy per United States Department of Energy requirements which included strategic energy plan (energy audits of county buildings), employee behavioral and purchasing manual, and contracting best management practices manual.

Rider University, Lawrenceville, NJ – Lead MEP Designer for preparing carbon neutrality study as part of a team. Rider University is planning to be carbon neutral by 2050; this study documented the necessary technical and financial requirements to achieve this goal. Work also included verifying the Scope 1, Scope 2, and Scope 3 Emissions Inventory prepared by the University and preparing the technical and financial aspects of the carbon neutrality plan.

Drexel University, Philadelphia, PA – Lead MEP Designer for preparing Greenhouse Gas Inventory for downtown campus using the Greenhouse Gas Protocol including Scope 1 Direct Emissions and Scope 2 Indirect Emissions.

Rockaway Corporate Center, Rockaway, NJ – Energy Modeling Engineer for energy audit and green building engineering services which included energy auditing, Energy Star rating, water usage profiling, sustainability practice evaluation, and recommendations and review of bids for energy conservation measures.

Delaware River Port Authority (DRPA) – Energy Modeling Engineer for alternative fuel study to provide recommendations for conversion of their fleet to alternative fuels. Included technology reviews, new developments, estimated pricing, and financial evaluation.

Stryker Brigade Combat Team Facilities Readiness Center and Field Maintenance Shop, Easton, PA – Lead Electrical Engineer for multi-disciplinary engineering services for this design-build project for a unique multi-use facility that houses two Pennsylvania Army National Guard units and a field maintenance shop all under one roof. The new facility is approximately 58,000 square feet. More than 200 Army National Guard soldiers at a time train at this facility. In addition, 32 full-time employees work at the Field Maintenance Shop, servicing more than 400 vehicles annually. This project was qualified to meet the requirements of LEED Silver certification.

University of Pennsylvania, The ARCH, Philadelphia, PA – Senior Electrical Engineer for complete renovation of a 1927-29 building of the late-Gothic Revival period with a richly detailed facade and interior as part of a team. The building housed three cultural centers, administrative offices, and classroom, performance, and meeting spaces. By restoring the ARCH, the building will serve as another focal point for student activities. This building achieved LEED 2009 for Commercial Interiors rating. The ARCH is listed on the Philadelphia Register of Historic Places and was awarded the 2015 Grand Jury Award for Preservation Achievement by the Preservation Alliance of Greater Philadelphia. (Design: 2013) (Construction: 2013)

University of Pennsylvania, Richards Medical Research Laboratories, Philadelphia, PA – Senior Electrical Engineer for historic 50,000-square-foot restoration and renovation to this iconic 1950s Louis Kahn-designed building as part of a team. The building is targeted for LEED Silver certification. Richards Medical Research Laboratories is listed as a National Historic Landmark.

South Jersey Federal Credit Union (SJFCU), Deptford, NJ – MEP Design Manager for the LEED Silver two-story 50,000-square-foot SJFCU building. Design included energy modeling, daylight harvesting, low-flow toilets, and other resource-conserving design components.

RESUME
Mohammad Haris Khan, RA, LEED AP
Architectural Lead

Education
Master of Science, Facilities Management, Pratt Institute, 2005
Bachelor of Architecture, National College of Arts, 2000

Professional Registrations
Project Management Professional
Registered Architect, NJ, 2019, #21AI02117500
NY, 2011, #034964

Certifications
ACI Concrete Field-Testing Technician - Grade I, LEED AP, 2008
NYCDOB 4-Hour Supported Scaffold User Certificate, 2015
OSHA 10 Hour, 2018

Professional Associations
American Institute of Architects (New York Chapter)

Summary of Experience
Haris Khan, oversees projects within the residential, medical, and educational sectors, and is experienced in architectural design and planning. He has worked on many federal, state, and local governmental projects, including those for the New York City School Construction Authority, New York City Health + Hospitals, and the New York City Housing Authority. Haris also manages various real estate development projects throughout New York City and Philadelphia.

Haris holds an MS in Facilities Management from Pratt Institute and a Bachelor of Architecture from National College of Arts. He is a Registered Architect in New York and New Jersey, a LEED AP, and Project Management Professional.

Representative projects include:

Newark Housing Authority (NHA) Townhouse Roof Assessment and Design, Newark, NJ – Project Manager for the roof inspection of 97 townhouses as part of ATANE’s architectural and engineering services to the NHA for assessment of roof conditions, design restoration measures, and prevention of deterioration. Inspections encompassed all roof elements and drain systems, along with building facades. Our engineers and architects evaluated the information gathered to determine existing conditions and design measures to restore and improve future performance of the roofs. Services for the project also included schematic design and design development for restoration and improvements, preparation of contract documents, analysis of bids and negotiations with contractors and construction administration, including inspection, verification of quantities, preparation of payment estimates and contract closeout. We also provided post-completion and warranty phase services.

Newark Housing Authority (NHA) Northward Elderly Sites, Newark, NJ – Project Manager for architectural and engineering services to repair building envelopes and replace the roofs at 11 high-rise buildings. All building heights varied from 10 to 15 stories. The project included an investigation and physical needs assessment of all roofs, bulkheads, and building envelopes. Our services involved evaluating all field information gathered, preparing preliminary sketches with locations of problematic areas, and preparing construction documents (plans and specifications) for the roof replacements and exterior waterproofing. We then consulted with the NHA concerning our investigation. Masonry probes, roof core tests, and HAZMAT investigations were performed on all the buildings. A detailed report of findings, prioritized with budget estimates, was submitted to the NHA. ATANE also provided services for the bidding and negotiation phase, as well as the construction administration phase.
Berry Plastics Corporation 100 Dowd Avenue Administrative Offices Redesign, Elizabeth, NJ — Project Manager for architectural and engineering services, as a team member, for 3,700-square-foot administrative offices that were redesigned due to the client’s need for more security, a town hall-size conference room, and improved office locations to enhance interaction among employees and clients. The project also improved the office entrance design and met handicapped accessibility requirements. Since the administrative offices were housed within a high-decibel noise environment, the design called for soundproofing the new office areas. Our services included review of existing documents and field inspection; schematic design/design development; development of contract documents; bidding and contract award; construction administration/monitoring; and closeout.

New York City Health + Hospitals Corporation (NYC H+H) Harlem Hospital Center Sprinkler Installation, New York, NY — Project Manager for sprinkler installation at Martin Luther King Complex and Pharmacy at Harlem Hospital Center as part of special and progress inspections for citywide HHC facilities under the agency’s first stand-alone special inspection contract. Inspectors are being assigned as needed based on their specific credentials. Responsibilities include managing and resolving all non-conformance items and performing field inspections for items such as sprinklers, mechanical, vertical, and fire suppression equipment. We are working closely with project managers and construction teams in the performance of these extensive ongoing special inspections.

New York City Housing Authority (NYCHA) Boulevard Houses Brick Repairs, Brooklyn, NY — Design Engineer for inspection, design, and contract development services to restore the brick masonry facade for 18 residential buildings (north and south sections). Constructed under mixed funding, the design included brickwork repairs, repointing, new parapets, lintel repairs, and asbestos abatement. ATANE prepared construction documents, including plans, specifications, and Cost: estimates, in accordance with NYCHA standards and the NYC Building Code. We also assisted in the bid award phase and provided design support during construction. Responsible for working on a fast-paced schedule to complete the survey and construction document preparation phase.

New York City Housing Authority (NYCHA) Claremont V Rehabilitation, Bronx, NY — Project Engineer for architectural and engineering design services for the housing complex, which required new brick parapets and repairs and repointing of brick masonry throughout and along the street sides of the buildings, along with a major overhaul of the boiler room with new structural slab and supports, five new high-efficiency boilers, and a state-of-the-art digital temperature control system. The complex consists of three five-story buildings containing 129 apartments, located at College Avenue in the Bronx on a 1.24-acre site.

New York City Housing Authority (NYCHA) Local Law 11/98 Cycle 6 Façade Inspections and A/E Services, Queens and Brooklyn, NY — Design Engineer for architectural and structural engineering services on an as-needed basis. The assignment involved façade inspections of 40 buildings in Queens and Brooklyn to fulfill the requirements of New York City Local Law 11/98. A minimum of one physical examination from a scaffold, termed a “critical inspection,” was performed on each building to obtain a representative sample of the condition of the exterior walls. Each report included a written description of the inspection findings, which are classified under one of three categories: Safe; Safe, with maintenance and repair program required; or Unsafe, in which an immediate danger is noted, and repairs must be undertaken within 30 days. NYCHA was informed immediately of unsafe conditions as was NYCDOB so that it could verify that repairs were made. ATANE completed inspections, obtained NYCHA approvals, and filed all reports with NYCDOB. Once recommended repairs were completed, ATANE performed re-inspections and filed amended reports with NYCDOB.
Jonathan Crawford, PE, SE
Assistant Discipline Manager Structural Services, Building Design Services

Mr. Crawford is an Assistant Discipline Manager, Structural Services in the Building Design Services Group where he has performed work for clients that include architects, developers, cellular carriers, and general contractors.

Some of the areas of Mr. Crawford’s experience include new construction, commercial buildings, renovations of existing structures, cell phone towers, and wireless communication installations. Mr. Crawford has designed office buildings, churches, school additions and renovations, light gage steel facades and bearing walls structures, steel framed and precast concrete garage parking decks, and communications equipment dunnage frames. He has experience using multiple building materials in engineering design including steel, steel composite framing, concrete, precast concrete, light gage steel framing, and masonry. He also has considerable expertise in fiber-reinforced polymer concrete design. Crawford has performed, managed, and reviewed many forensic and non-forensic structural condition surveys and analyses for a variety of structures subsequent to the storm event commonly referenced as “Sandy”.

PROJECT EXPERIENCE

Monmouth University Residence Hall
West Long Branch, New Jersey
Engineer of Record responsible for the structural design and construction administration for a new 48,000 square foot three story residence hall with retail space in the partial basement level. This project utilized Revit Building Information Modeling (BIM) to coordinate the design between the architectural, structural, mechanical, electrical and plumbing trades. The building structure is designed utilizing masonry block bearing walls with hollow core precast concrete floor plank construction, steel moment frames in the basement level to resist lateral loads in conjunction with concrete shear walls, and pre-engineered cold formed metal framing roof trusses.

NJSDA Quarter Mile Lane Elementary School
Bridgeton, NJ, Engineer of Record
Structural Engineering Task Leader responsible for overseeing the engineering design and performed the qualification assurance & control for a multi-story, 54,280 SF-in-plan Elementary School Addition to be built for LEED Gold Certification. This NJSDA project provided new classrooms, gymnasium, auditorium and a three-story classroom wing addition.

NJSDA Buckshutem Elementary School
Bridgeton, NJ Structural Engineer of Record and Structural Task Leader responsible for overseeing the engineering design and performed the qualification assurance & control for a one-story, 33,800 SF Elementary School
Addition to be built for LEED Gold Certification. This NJSDA project provided new classrooms, gymnasium technology labs and art.

Donald M. Payne Vocational Technical School
Newark, New Jersey, Engineer of Record responsible for the structural design and construction administration of the new 73,000 square feet covered pre-cast parking garage to accommodate the new 320,000 square feet high school. The roof of the parking garage will be a green roof with the space being utilized for outdoor activities. The garage was constructed utilizing a precast concrete superstructure supported by conventional concrete spread foundations with an expansion joint to account for thermal movements. The lateral load resisting system consisted of a system of precast concrete shear walls and cast in place concrete shear walls.

MetLife Stadium, AT&T Telecommunication Building
East Rutherford, NJ Structural Engineer of Record responsible for the construction documents and construction administration for a new 3,000 sf head end building. The building is designed utilizing a system of pile foundations with a steel superstructure. Steel moment frames were utilized as the lateral load resisting system.

Ocean County College Performing Arts Center
Toms River, NJ Engineer of Record – Project Manager responsible for coordinating the Structural, Mechanical, Electrical, Plumbing and Civil trades and the structural engineer of record for a new 55,000 square foot three story performing arts center consisting of classrooms, a theater, and a connector bridge to the adjacent Grunin Building. This project utilized Revit Building Information Modeling (BIM) to coordinate the design between the architectural, structural, mechanical, electrical plumbing, and civil trades. The building structure is designed utilizing concrete retaining walls with a structural steel superstructure.

Two River Theater Addition
Red Bank, NJ Engineer of Record – Project Manager responsible for coordinating the Structural, Mechanical, Electrical, and Plumbing trades and the structural engineer of record for a new 36,000 square foot three story addition consisting of workshops, scene fabrication, rehearsal spaces, work areas, and office space. The third floor and roof of the building are cantilevered over the second floor of the building presenting a challenging structural design to meet the code requirements for vibration, serviceability, and strength. Several areas have two-story ceiling areas with catwalks around the spaces. The building structure is designed utilizing concrete foundations with a structural steel superstructure.

East Orange Housing Authority
East Orange, New Jersey Structural Engineer of Record responsible for the structural engineering design for a four story 61,000 square foot multi-use senior housing project with a parking area on the first floor. The basement and first floor level utilized cast in place concrete and steel framing along with steel moment frames to resist the lateral loads. The second through fourth floor are conventional wood framed residential units utilizing plywood shear walls to resist the lateral loads.

Garfield Police Station
Garfield, NJ Structural Engineer of Record responsible for a new 18,000 square foot three-story police headquarter building consisting of office spaces, holding cells, covered vehicle sally port, and weapon storage. The project was designed as a Class IV essential structure that incorporated hardened design. This project utilized Revit Building Information Modeling (BIM) to coordinate the design between the architectural, structural, mechanical, electrical plumbing, and civil trades. The building structure is designed utilizing concrete foundations with a structural steel superstructure with a composite slab on metal deck. The roof of structure consists light metal roof trusses.
JAREK STANISZEWSKI

ASSIGNMENT: Sr. Cost Estimator

EDUCATION:
- B.S. Construction Management, Drexel University
- M.S. Management and Marketing, University of Bialystok

SOFTWARE EXPERTISE: Bluebeam, Planswift, Primavera P6

PROJECT EXPERIENCE

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Details</th>
</tr>
</thead>
</table>
| **PUBLIC SAFETY BUILDING**
Collingswood Township, NJ | Mr. Staniszewski provided cost estimating for the $10M, 30,000sf public safety building. Scope of work included office space, storage, gym/fitness center, kitchen/dining room, laundry, restrooms, and associated MEP. |
| **ON-CALL MEP CONTRACT**
General Services Administration | Mr. Staniszewski is currently providing cost estimating services on a task order basis for various federal building and courthouse renovation projects throughout Pennsylvania. Some of the projects involved include GSA, Byrne Switchgear #1 and #2; MATSSSC Generator Exhaust Stack Re-route; PITC Data Center; Harrisburg US Marshall Service Detention Cell HVAC Modification; HVAC Air Distribution and Equipment Condition Study. |
| **NEW JOINT HEALTH SCIENCE CENTER**
Rowan University-Rutgers
Camden Board of Governors | Mr. Staniszewski provided cost estimating services for the new construction of a $50 Million, 3-story science center in Camden, NJ. Scope of work includes laboratories, office space, meeting space, electrical and HVAC systems. |
| **NEW TRAINING AND PRODUCTION FACILITY**
Philabundance | Mr. Staniszewski provided cost estimating services for the new construction of a training and production facility in Philadelphia, PA. The Scope of Work consists of a 25,000-SF training and production facility including office space, storage, community center and kitchen facilities. |
| **FORUM AUDITORIUM RENOVATION AND UPGRADES**
PA DGS | Mr. Staniszewski is currently providing cost estimating for the $80M, 400,000 sf renovation and mechanical upgrades project. This project is committed to the preservation of historic aspects of the building while modernizing it to be able to accommodate more than 1,000 employees and the public on a daily basis. |
Mr. Staniszewski is currently providing cost estimating for the $1.5M improvement project. Scope of work includes classrooms, media lab, engineering lab, flooring, ceilings, light fixtures and related items.

Mr. Staniszewski is currently providing cost estimating services for the $19M 22,000 sf addition and renovation to the 48,000 sf existing building. Scope of work includes demolition, new classrooms, library, cafeteria, kitchen, flooring, ceilings, window and door replacement, roof replacement, and related MEP work.

Mr. Staniszewski is currently providing cost estimating for the $15 M renovation to the existing building and a 32,000 sf addition. Scope of work includes demolition, new classrooms, library, gymnasium, cafeteria, bathrooms, flooring, ceilings, façade remediation, window and doors, roof replacement, and related MEP work.

Mr. Staniszewski is currently providing cost estimating for the $1.5M improvement project. Scope of work includes classrooms, media lab, engineering lab, flooring, ceilings, light fixtures and related items.

Mr. Staniszewski conducted a thorough quantity survey and material takeoff of the plans and specifications for determining the anticipated cost of construction. The Scope of work consisted of a full roof replacement and select masonry restoration of an existing school located in Philadelphia, PA. The project was estimated at $680K.

Mr. Staniszewski provided cost estimating for the $1.2M roof replacement and masonry repair project. Scope of work included demolition, new roof, masonry repairs, and related mechanical and electrical items.
QA/QC Report
Quality Control

The Quality Control process is overseen by Richard Hallahan, PE. Steps are taken to ensure QA/QC measures are implemented during all projects and project tasks. QA/QC review reports and collected information are gathered throughout the project duration. Results of reviews are collectively utilized to improve subsequent project task performance. The guidance for Quality Control is contained in the ATANE Quality Manual, adhering to ISO 9000:2015 principles.

Our 5-point Quality Control Plan consists of;

1. Quality Management
 - The QA/QC manager is the single individual responsible for tailoring, maintaining, and enforcing the QC plan for all task orders assigned under the contract

2. Technical Experience
 - Part of the control process is to ensure we assign team members with appropriate experience to work tasks

3. Team Involvement
 - Including the team members and stake holders in task kick-off meetings
 - Hold progress status meeting at regular intervals

4. Document Management
 - All technical documents (drawings & specifications), QA/QC reports, meeting minutes, archived correspondence (archived letters & transmittals) co-located on ATANE projects servers
 - All design phase submissions are archived

5. QA/QC Program Consistency
 - Enforcement of the QC plan
 - Adherence to the processes outlined in the ATANE Quality Manual
 - Adjusting the QC plan for subsequent tasks based on issue and information from prior task experience

We achieve Quality Control & Quality Assurance by making sure that;

 - Every team member clearly understands their responsibilities to the project
 - We maintain open lines of communications between team members, with relevant notification to stake holders
 - We follow through with information on issues found in any one project segments and convey that information to team members working on other segment
ATANE

ISO 9001: 2015
CORPORATE QUALITY MANUAL

Prepared by:
Richard Hallahan P.E.
ATANE CONSULTING.
40 Wall Street New York, NY 10005

Printed copies of this document are not controlled
1.1 Introduction

This Quality Manual (QM) defines the Quality Management System (QMS) of ATANE in compliance to the requirements of ISO 9001:2015 standards.

The ATANE quality manual portrays its Quality Policy and how its requirements are integrated in the daily operation of the utility to achieve its excellent customer satisfaction.

The QM, along with associated documents mentioned hereto, aims to:

a. Describe the basic elements of the QMS of ATANE and to serve as reference in its implementation and continual improvement;
b. Inform ATANES internal and external stakeholders and enable them to observe and implement the quality system; and
c. Serve as reference and guide for all employees and make them familiar with and appreciate the ATANE QMS.

1.2 Scope of the Quality Management System

The quality management system defined in this manual applies to the Construction Management/ Construction Inspection, Engineering Design, Architecture/ Facilities Design, Bridge Inspection, and Land Surveying services that is offered by ATANE.

1.3 Development of ATANES Quality Management System

The QMS of the ATANE is built up through thorough undertakings of the existing systems integrating some changes to make it improved. Prior to ATANES transition of new Vision, Mission, Goals, Core Strategies to account developments and emerging concerns in the architecture, engineering and constructions industry. ATANE conducted internal and external environment scanning. Through this, internal and external issues, risks and opportunities were identified.

ATANE uses the Plan Do Check Act (PDCA) cycle in determining requirements, activities, management systems and assignments. It is an iterative four-step management method for the control and continual improvement of processes and products. The elements of this cycle is illustrated in Figure 1 Plan Do Check Act Model:
Figure 1. Plan Do Check Act Model

ATANE maintains its QMS that would effectively control its business processes to consistently meet customer requirements and enhance their satisfaction.

ATANE shall also periodically monitor, analyze and assess performance and effectiveness of its QMS. Results of analysis and assessment shall be used for the continual improvements of its QMS.
2.1 Normative References

In developing this quality management system, the company has worked to the move recent revision of the relevant ISO standards, as follows.

ISO 9001: 2015 Quality Management Systems
3.1 Terms and Definitions

For the purpose of this document, the terms and definitions provided in ISO 9000: 2015.

Any deviation from the definitions in the ISO document above shall be listed below.

Audit: The systematic, independent, and documented process to objectively determine the fulfillment of audit criteria. Continual Improvement — is an ongoing effort to improve products, services, or processes. These efforts can seek “incremental” improvement over time or “breakthrough” improvement all at once.

Corrective Action: Action to cause(s) of nonconformity in order to prevent its recurrence or prevent occurrence elsewhere.

Customer Satisfaction: Customer’s perception of the degree in which the customer’s requirements have been fulfilled.

Effectiveness: Extent to which planned activities are materialized and planned results are achieved.

Interested Parties: Person or organization than can affect, be affected by, or perceive itself to be affected by a decision or activity.

Non-conformance: Non-fulfillment of a specific requirement, either of the standard or company policy, procedure and other planned arrangements.

Quality: Is the totality of features and characteristic of a product or service that bear on its ability to satisfy stated and implied needs.

Quality Policy: Statement by the company of its intentions and principles in relation to its overall intentions and direction with regard to quality concerns, as formally expressed by the Top Management through the ISO Facilitator.

QA/EH&S: ATANES Quality Assurance/Environmental Health & Safety Department

QAM: Designated ATANES Quality Assurance Manager

QMS: ATANES Quality Management System
4.1 Understanding the organization and its context

ATANE is committed to defining our position in the architecture, engineering and construction industry and understanding how relevant factors arising from legal, political, economic, social, technological and environmental issues influence our strategic direction and our organizational context.

ATANE identifies, analyses, monitors and reviews factors that may affect our ability to satisfy our customers and stakeholders, as well as; factors that may adversely affect the stability of our process, or our management system’s integrity.

To ensure that our QMS is aligned with our strategy, whilst taking account of relevant internal and external factors; we initially collate and analyze pertinent information in order to determine potential impact on our context and subsequent business strategy.

ATANE then monitors and reviews this information to ensure that a continual understanding of each group’s requirements is derived and maintained. To facilitate the understanding of our context, we regularly consider issues that influence our context during bi-annual department management reviews, department internal audits and project quality internal audits, the information is conveyed via during monthly executive meetings using dashboard metrics from DELTEK enterprise planning software and business planning documents.

The output from this activity is evident as an input to the consideration of risks and opportunities, and the actions that we take to address them. Refer to Section 6.0 for more information about our risk and opportunity management framework.

Table 1: Internal and External Issues

<table>
<thead>
<tr>
<th>Internal Issues</th>
<th>External Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market share</td>
<td>Customers</td>
</tr>
<tr>
<td>Employees</td>
<td>Market & Competition</td>
</tr>
<tr>
<td>Performance</td>
<td>Regulatory & statutory</td>
</tr>
<tr>
<td>Capacity</td>
<td>Economic backdrop</td>
</tr>
<tr>
<td>Values/ culture</td>
<td>Technology</td>
</tr>
<tr>
<td>Innovation/ knowledge</td>
<td></td>
</tr>
</tbody>
</table>

Although we acknowledge that ISO 9001:2015 does not require our organizational context to be maintained as documented information, we maintain and retain; in addition to this document, the following documented information to describe our organizational context:

1. Analysis of project work plans, project implementation plans, scope reports, strategies, and statutory and regulatory commitments;
2. Analysis of current and forthcoming technology
3. Analysis of market and industry competitors and internal financial reports
4. Economic reports from relevant business sectors;
5. Technical reports from technical experts and consultants;
6. Documented results of Department Management Reviews, Department Internal Audits, Project Quality Internal Audits, External Audit (Registrar, Client, etc.) process maps and reports, etc.
6. Corporate and Department Processes and Procedures

4.2 Understanding the needs and expectations of interested parties

ATANE recognizes that we have a unique set of interested parties whose needs and expectations change and develop over time, and furthermore; that only a limited set of their respective needs and expectations are applicable to our operations or to our quality management system. Such needs and expectations broadly include those shown in the table below.

To ensure that our products and processes continue to meet all relevant requirements, we identify and assess the potential impact of any relevant needs and expectations that may be elicited from the interested parties.

Where appropriate, to ensure that our processes are aligned to deliver the requirements of our interested parties; we convert relevant needs and expectations into requirements which become inputs to our QMS and to our project delivery and design services.

Table 2: Interested Parties Needs and Expectations

<table>
<thead>
<tr>
<th>Interested Parties</th>
<th>Needs & Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Competitive bids, service reliability & value</td>
</tr>
<tr>
<td>Owners/ Shareholders</td>
<td>Profitability & growth</td>
</tr>
<tr>
<td>Employees</td>
<td>Shared values & security</td>
</tr>
<tr>
<td>Joint Venture Partners/ Subconsultants</td>
<td>Beneficial relationships</td>
</tr>
<tr>
<td>Regulatory/ statutory</td>
<td>Compliance & reporting</td>
</tr>
</tbody>
</table>

4.3 Determining the scope of the quality management system

Based on the analysis of the issues and requirements identified in Sections 4.1 and 4.2, ATANE has established the scope of our quality management system in order to implement our objectives and our policies that are relevant to our context, products and any interested parties.

This document describes our quality management system, delineates authorities, inter-relationships and responsibilities of process owners and personnel that operate within the system for the:

Provision of construction management. Construction inspection, engineering design, architecture/ facilities design, bridge inspection and surveying.

Although we recognize that ISO 9001:2015 does not require a quality manual, we have decided to produce and update our quality manual, as our employees, customers, suppliers and other stakeholders perceive it will add value to our operations.

This document also demonstrates the relationship between our quality management system and the sequence and interaction of our key processes. Conformance to ISO 9001: 2015 has been verified through a formal assessment and review process by SRI Quality System Registrar.

4.4 Quality management system and its processes
4.4.1 Management System Process

ATANE has implemented a quality management system that exists as part of a larger strategy that has established, documented and implemented our processes, quality policies and objectives, whilst satisfying the requirements of ISO 9001:2015.

To achieve this, ATANE has adopted the process approach advocated by ISO 9001:2015. Top management has determined the processes required for achieving the intended outputs. By defining four key process-groups and by managing their inputs, activities, controls, outputs and interfaces; we ensure that system effectiveness is established maintained. These key process groups include:

1. Leadership, planning and risk management processes;
2. Customer and stakeholder processes;
3. Project delivery and service development processes;
4. Project evaluation and improvement processes.

These process groups are described using tools such as documented procedures, process maps, flow diagrams, matrices, schedules, and charts, etc. Refer to the Sequence & Interaction of Processes in Figure 2 which shows the sequence and interaction of the process groups within our management system.
It is recognized that defining, implementing and documenting our quality management system is only the first step towards fully implementing its requirements. The effectiveness of each process and its subsequent output is measured and evaluated through bi-annual department management reviews, department internal audits and project audits and analyzing the data and results.

We use key performance indicators (KPIs) that are linked to our goal and objectives to control and monitor our processes, as well as assessments to determine the risks and opportunities inherent to each process. We use trends and indicators relating to nonconformities, objectives and corrective action, as well as, monitoring and measurement results, audit results and customer satisfaction data, process performance and the conformity of our products.

4.4.2 Documented Information

4.4.2.1 Management System Documents

ATANE ensures that our QMS includes the documented information that is required to be maintained and retained by ISO 9001:2015, and additionally, any documented information identified by our Organization that demonstrates the effective operation of our QMS. Refer to the Register of Documented Information.

ATANE applies the following criteria to all types of documented information in order to assess whether the information is necessary for demonstrating the effectiveness of our QMS, and whether it should be formally controlled.

1. Communicates a message internally or externally;
2. Provides evidence of process and product conformity;
3. Provides evidence that planned outputs were achieved;
4. Provide evidence that risk and opportunities were assessed;
5. Outlines areas for improvements
6. Provides knowledge sharing.

Should any of the above criteria apply, ATANE ensures that this information is retained and/or maintained as a form of documented information

4.4.2.2 Creating and Updating

ATANE ensures that when we create documented information it is appropriately identified and described (e.g. title, date, author, reference number) and is available in an appropriate format (e.g. language, software version, graphics, etc.) and on appropriate media (e.g. paper, electronic). All documented information is reviewed and approved for suitability and adequacy.

4.4.2.3 Controlling Documented Information

Documented information is retained to provide evidence of conformity to the requirements specified by ISO standards, customer requirements and of the effective operation of our management system. ATANE uses standard forms and templates that are accessed via a local area network computer system. An electronic document management system, which is backed up and updated as required, is used to retain documented information ensuring only the current versions

Printed copies of this document are not controlled
are available to users. All management system documents are controlled according to the Document and Data Control Procedure (QOP-42-01) which defines the process for:

1. Approving documents for adequacy prior to issue;
2. Reviewing and revising as necessary and re-approving documents;
3. Ensuring that changes and current revision status of documents are identified;
4. Ensuring that relevant versions of applicable documents are available at points of use;
5. Ensuring that documents remain legible and readily identifiable;
6. Ensuring that documents of external origin are identified and their distribution controlled;
7. Preventing the unintended use of obsolete documents;
8. Ensuring that documents of external origin are identified and their distribution control

Printed copies of this document are not controlled
5.1 Leadership and Commitment

ATANES Top Management and the QA/ EH&S Department commits to implement its Quality Management System efficiently and effectively through establishing the Quality Policy, Quality Goal and Objectives and Management Reviews. Specifically, it commits the following:

- Establish and promote awareness and understanding of the Quality Policy to all levels in the organization and its other stakeholders or relevant interested parties;
- Set Quality Goals and Objectives and implement action plans;
- Integrate QMS in the operations of the organization for it to achieve its excellent customer satisfaction;
- Establish and maintain Customer-Centered Management;
- Provide support and necessary resources to achieve ATANES goals and objectives while maintaining the effectiveness of its QMS;
- Assess the performance of QMS through management reviews and identify areas for improvement;
- Maintain the integrity of its QMS and ensure that the requirements specified in ISO 9001:2015 are met; and
- Provide a framework of continual improvement by recognizing the Quality issues and initiate improvement and changes as part of its controls and management.

The head of departments shall be responsible for promoting the use process approach and adopting a risk-based thinking in their respective areas of responsibility. They will also be the recommending party in initiating continual improvement to be integrated in the organization's QMS.

5.2 Policy

The Quality Policy serves as the overall direction and guide of ATANE organization in terms of Quality in the implementation of all its services.

ATANE is dedicated to providing the highest quality of professional services on schedule, within budget and without compromising the quality or function. We are committed to maintaining the highest standard of integrity and remaining at the forefront of state-of-the-art technology. We strive for growth, continual improvement and meaningful employment for our people. Our dedication, responsiveness and attention to detail are the reasons for our success. We ensure satisfaction and strive to improve the quality of life in our community by enhancing the local infrastructure.

5.3 Organizational roles, responsibilities and authorities

The Top Management of ATANE, the Senior Vice President of QA/ EH&S and designated Quality Assurance Manager must ensure that the responsibilities and authorities for relevant roles are assigned, communicated, and understood within the organization. It must assign the responsibility and authority to:

- Ensure that the system conforms to the requirements of ISO 9001:2015 and that the processes are delivering their intended outputs;
- Report on the performance of the system, on opportunities for improvement, and on the need for change or innovation, and especially for reporting to top management;
Ensure the promotion of customer focus throughout the organization; and
Ensure that integrity of system is maintained when changes to ATANE QMS are planned and implemented.

Some of the above tasks may be delegated, but it is the Top management’s responsibility to ensure they are planned, implemented and achieved. The implementation and adherence to systems is also their responsibility. Unless the Top management drives and follows up, the system cannot be implemented effectively.

5.3.1 Quality Representative (Quality Assurance Manager)

Some of the roles of the Quality Assurance Manager (QAM) but not limited to:

1. Identifying the processes required for implementing quality management systems that can help achieving company goals is a very important step in the implementation of the quality management system.
2. Serves as a liaison with standard bodies and getting the latest applicable national and international standards required for implementing and maintaining ISO 9001 series of standards.
3. Making arrangements for adequate audits in the case of any changes in the system, process, or the people.
4. Helping the DMs in identifying the controls in processes identified and documented. This should be done by considering the company objectives, goals, requirements of quality management system and legal and regulatory requirements.

5.3.2 Humans Resource Department

As the in-charge of employee development, some of the Human Resource Department (HRD) roles in the implementation of the QMS are the following:

1. Communicating the importance of meeting customer as well as regulatory requirements during the training program or in any other occasion found suitable for this purpose.
2. Explaining the concepts of ISO 9001:2015 throughout the organization. Help of designated Quality Assurance Manager can be obtained in giving training.
3. Training the people to adapt to the systems because preparing the procedures, instructions, and manuals and documenting them is not the end of implementation. Everyone needs to read, understand and implement them in their routine works.
4. Proactively getting information on the changes coming in the quality management systems and alarming the people in the organization in time.

5.3.3 Department Manager

Some of the roles of the Department Manager (DM) but not limiting to:

1. Understanding the company mission, vision, policies, and objectives carefully, and communicating the same in simple language down the line. The role should ensure that
people have understood the same and will be able to demonstrate it in their routine activities.
2. Responsible for writing the policy and goals for his/her department and divisions.
3. Interpreting the customer requirements and communicating down the line in the organization.
4. Proactively discussing with the people and ensuring that all have understood the real essence of the quality policy, quality objectives and goals, their role in achieving the goals and in complying with the statutory, legal and regulatory requirements.
5. Getting the documents, viz., work procedures, work instructions, job descriptions, process parameters, and specifications, etc., prepared by the concerned personnel and bringing them under control.
6. Scrutinizing all the formats used in the organization and standardizing them is a very important activity. There must be a role to collect all the forms, list them, index them, discuss them with the concerned people, modify them to reduce the number of forms, and make them more effective and user-friendly.
7. Amending the procedures and the documents once necessary.
8. Ensuring the integrity of the management system is maintained when changes are planned and implemented.

5.3.4 Internal Audit

ATANE shall have a team of internal quality auditors to periodically audit the systems throughout the organization. The potential internal quality auditors shall be the designed Quality Assurance Manager and QA/EH&S Professional I. They will be in-charge of the following but not limiting to:

1. Developing procedures for internal quality audits and training the users for the implementation.
2. Planning internal quality audits and making arrangements for the audits; and communicate to the users for the effective implementation of the systems.
6.1 Actions to address risk and opportunities

The overall aim of risk and opportunity management within ATANE is to ensure that organizational capabilities and resources are employed in an efficient and effective manner to take advantage of opportunities and to mitigate risks.

Top Management and Department Managers are responsible for incorporating risk based thinking in the organization’s culture. This includes the establishment of risk management policies and targets to ensure effective implementation of risk and opportunity management principles and activities by:

1. Providing sufficient resources to carry out risk and opportunity management activities;
2. Assigning responsibilities and authorities for risk and opportunity management activities;
3. Reviewing information and results from audits and risk and opportunity management activities.

The scope of ATANES risk and opportunity management process includes the assessment of the internal and external issues identified in Section 4.1, and the assessment of the needs and expectations of any interested parties identified in Section 4.2. Risk and opportunity management is undertaken as part of ATANES day-to-day operations and is captured at the following hierarchy:

1. Strategic level;
2. Program level;
3. Department level;
4. Process level;

Establishing such a hierarchy for capturing risk and opportunity ensures that each is managed at the most appropriate level within our Organization. Typically, the following categories are assigned to each level in the hierarchy as shown in the table opposite.

ATANE has classified its ‘risk appetite’ as the amount of risk that we are willing to accept in pursuit of an opportunity or the avoidance of risk where each pertains to product and/or system conformity, and which reflect the following considerations:

1. Risk management philosophy per business process
2. Capacity to take on or mitigate risk
3. Objectives, business plans and respective stakeholder demands
4. Evolving industry and market conditions
5. Tolerance for failures

ATANE uses registers to help record, assess, respond, review, report, monitor and plan for the risks and opportunities that we perceive to be relevant. The registers allow ATANE to methodically assess each risk and to study each opportunity associated with our organizational context, and the needs and expectations of our interested parties. The register records the controls and treatments of risks and opportunities and preserves this knowledge as documented information. Examples of registers would be

1. Project work plans, project implementation plans, scope reports, strategies, and statutory and regulatory commitments;
2. Market and industry analysis and corporate financial reports

Printed copies of this document are not controlled
3. Economic reports from relevant business sectors;
4. Technical reports from technical experts and consultants;
5. Documented results of Department Management Reviews, Department Internal Audits, Project Quality Internal Audits, External Audit (Registrar, Client, etc.) process maps and reports, etc.
6. Corporate and Department Processes and Procedures

6.2 Quality goal and objectives and planning to achieve them

ATANE sets out its goals and objectives and targets on a regular basis within the department management reviews where details of program dates and responsibilities are defined. Improvements in quality and performance are incremental and are in keeping with the size and complexity of our organization.

When setting goals, objectives and targets, our organization ensures that they are consistent with the needs and expectations of our interested parties, as defined in Section 4.2, and to our corporate policies. In addition, technological options, financial, operational and business requirements are considered.

In order to determine whether or not our objectives and targets are being met, they are measured and reported as a set of key performance indicators (KPI). This allows progress to be monitored as metrics are gathered and data is analyzed. KPIs and objectives for ATANE include the following aspects:

1. Utilization rate
2. Overhead rate:
3. Break-even rate:
4. Net multiplier
5. Age accounts receivable
6. Profit-to-earnings ratio
7. Net revenue per employee
8. Cash flow
9. Proposals pending
10. Backlog volume

On the basis of set quality policies and in connection with the application of the ISO 9001 quality management principles, ATANE sets quality objectives that are specified in the register of objectives. All employees are responsible for fulfillment of the quality policies and subsequent objectives. Department Managers are obliged to develop general objectives into objectives applicable to their departments and employees.

<table>
<thead>
<tr>
<th>Quality Objectives</th>
<th>Target</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement ISO 9000: 2015</td>
<td>Achieve certificate by Q1</td>
<td>ISO 9000: 2015 certificate</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>Implement training program</td>
<td>Achieve certificate by Q1</td>
<td>Feedback improved performance</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
</tr>
</tbody>
</table>
6.3 Planning of changes

The quality management system is planned and implemented in order to meet our corporate objectives and the requirements of ISO 9000:2015. The planning process involves establishing and communicating our policies, objectives, associated operational procedures and adapting to changes that may affect the quality management system and risk management system in the strategic, program, department and process levels.

This document and its associated processes and procedures constitutes our overall plan for establishing, maintaining and improving the quality management system. For each instance of management system planning, the output is documented and retained accordingly and changes are conducted in a controlled manner. The management review, the internal audit processes and associated business and risk management processes and procedures ensure that the integrity of the QMS is maintained when significant changes are planned which may affect key processes.

Whenever quality management system changes are planned, Top management ensures that all personnel are made aware of any changes which affect their process, and that subsequent monitoring is undertaken to ensure that QMS changes are effectively implemented.
7.1 Resources

The main intention behind this general requirement is that the people working within the quality management system are competent to fulfil their duties, supported by equipment and infrastructure that is fit for purpose.

The work environment of an organization has many human and physical factors that can influence quality, effectiveness and efficiency. These factors need to be identified and managed and can include; protective equipment, ergonomics, heat, noise, light, hygiene, humidity, vibration, temperature etc.

The Top Management and Department Managers shall determine and provide appropriate resources necessary in the implementation, maintenance and improvement of the QMS to fulfil the Quality Objectives. These resources include adequate workforce, provision of infrastructure such as buildings, equipment, IT systems, transport, etc. Determining what is needed and what maintenance program should be developed to ensure its continuing capability is part of the planning.

7.2 Competence

ATANE ensures not only the adequate workforce for the effective operation of the Quality Management System and its identified processes but also their competence in terms of education, training, skills and experience. In order to determine competence, a competence criteria shall be established for each function affecting quality. This can then be used to assess existing competence and determine future needs. Where criteria are not met, some action is required to fill the gap.

Competency assessment shall be conducted every year to assess personnel competencies through an online based Performance Appraisal. From this assessment, competency gaps shall be addressed through learning interventions such as training, coaching and mentoring and other methods deemed applicable by their immediate superiors. Training or reassignment may even be necessary. Retained documented information is required to be able to demonstrate competence. Documented information indicating competence is submitted and tracked through DELTEK ERP. Recruitment and induction programs, training plans, skills test and staff appraisals often provide evidence of competence and their assessment. Competency requirements are also included in the recruitment notices and job descriptions.

The Top Management and Department Managers shall ensure that all personnel are aware of the importance and relevance of these interventions to the achievement of the Quality Objectives. A training and development plan shall be developed to address the organizations’ and department competency requirements and can be tracked through the online based Performance Appraisal. The Human Resource Department as the focal unit on employee development should ensure the participation and coordination of all departments to guarantee systematic and on-time implementation of the training and development plan. These learning interventions shall be evaluated as to its effectiveness in terms of enhancing personnel competencies.

7.3 Awareness

Personnel need to be made aware of the relevance of their activities and how they contribute to
achievement of the quality objectives and the effectiveness of the management system and resulting organizational performance. Hence, all personnel shall undergo proper orientation on the ATANES Quality Policy; the department’s Quality Objectives; the identified processes within each department; the importance of the tasks assigned and benefits of improved performance; and the risks and opportunities within the process including potential non-conformities. Communication process for both internal and external parties is established to ensure that necessary information reaches the concerned parties.

7.4 Communication

Effective communication is essential for a management system. Top management need to ensure that mechanisms are in place to facilitate this. It should be recognized that communication is two-way and will not only need to cover what is required, but also what was achieved.

The Quality Policy shall be cascaded and be made available to all stakeholders of ATANEN such as the customers, employees, other government agencies and all other interested parties. It will form part of the preliminaries in any relevant gathering such as Employees Forum, convocation, department meetings, and orientation of newly-hired employees. The quality policy shall be used as framework for the establishment of the quality objectives. The Top Management shall ensure that the Quality Policy is communicated, understood, and adhered to within the organization.

Changes in the quality management system should be communicated appropriately to interested parties (albeit in practice this is mainly internal parties) and should identify appropriate levels of re-training. Mechanisms for communication could include; meetings, notice boards, in-house publications, awareness raising, seminars, toolbox talks, intranet, email, etc.
7.5 Documented Information

![Diagram](image)

Figure 3

Level 1 Quality Policy: This policy serves as the overall direction and guide of ATANES organization in terms of Quality in the implementation of all its services. Its ultimate intent and goal is to have a more competent workforce for excellent service delivery through optimizing the Quality Management System thereby improving the standards, process flow, and protocols in service delivery, and customer relations; and standard customer service assessment tools.

Level 2 Quality Objectives: This document states the desired results related to quality. It shall serve as the guide and standard for processes. Once achieved, it would also signify that the QMS in place is being implemented effectively and efficiently.

Level 3 Quality Manual: The Quality Manual describes ATANE's structure and quality management systems with regards to its services. Compliance to it assures that all activities are planned, supervised, monitored and controlled.

Level 4 Business Line Project Execution (BLPE): The processes and procedures of the BLPE describes the procedural requirements that must be followed to ensure quality, risk assessment and level of service on the department level for project delivery.

Level 5 Records and Evidences: These are the “raw data” of the operations. These are the documents which serve as evidence of the various services done by ATANE. These include filled-up forms, supporting documents, client feedback, internal and external audit reports and other records generated in the delivery of services.
8.1 Operational plan and control

ATANE establishes and implements documented plans and procedures that describe the processes (Refer to Section 4.3) and the controls required for the provision of services in awareness to the objectives, the potential for planned or unintended change, and the risks and opportunities identified in Section 6.1. During this planning phase, management or other responsible personnel identify the following parameters:

- Objectives and requirements for the service;
- Verification, validation, monitoring, inspection and test requirements;
- Documented information to demonstrate conformity;
- Document information to demonstrate process effectiveness;
- Necessary resources; or outsourced processes and their controls;
- Criteria for process performance and product/service acceptance;
- Potential consequences and mitigation to change affecting input requirements;
- Resources necessary to support the ongoing operation of the service.

The output of planning activity includes documented plans, resource schedules, process, requirements and procedures.

8.2 Requirements for products and services

8.2.1 Customer communication

In accordance with our commitment to exceed our customer’s expectations, ATANE highlights effective customer communication as an essential element of delivering customer satisfaction. Appropriate handling of customer communication helps to reduce customer dissatisfaction and in many cases turn a dissatisfying scenario into a satisfying experience. Customer communication occurs through the following formats, events and processes:

1. Brochures, specifications or technical data sheets relating to our products and services;
2. Enquiries, request for information, estimates, negotiated prices notices to proceed, and invoices
3. Confirmation of authorized change orders’
4. E-mails, letters and general correspondence;
5. Quality audits performed by the client or a contracted consultant;
6. Customer feedback and complaints management process;

Top Management and Department Managers is responsible for establishing methods of communication with our customers to ensure enquiries, contracts or order handling; including amendments, customer feedback and complaints are handled expeditiously and professionally.

8.2.2 Determining the requirements for products and services

Printed copies of this document are not controlled
ATANE develops appropriate requirements to ensure that we satisfy the needs and expectations of our customers or relevant interested parties. ATANE ensures that customer requirements are clearly articulated and that their requirements are captured and understood before the acceptance of a project contract and/or project work order. Customer requirements include the following:

1. Previous customer requirements
2. Statutory and regulatory requirements related to the project;
3. Other non-customer specified performance requirements;
4. Any additional requirements determined by ATANE;

8.2.3 Review of the requirements for products and services

Prior to committing to the customer, ATANE ensures and confirms our capacity to accomplish and appropriate the required product or service. Pre-acceptance reviews are conducted to ensure that:

1. Project delivery requirements are defined and are appropriate;
2. Any additional requirements determined by ATANE are appropriate;
3. Contract requirements differing from those previously expressed are resolved;
4. ATANE has the ability to meet the defined requirements;
5. Documented information is retained and maintained showing the results of the review.

Customer requirements are confirmed before acceptance by the exchange of contracts via appropriate electronic or hard copy formats.

8.2.4 Changes to requirements for products and services

ATANE ensures that all relevant documented information; relating to changes in project scope or service requirements, is authorized and amended where necessary, and that all relevant personnel are made aware of the documented requirement changes.

8.3 Design and development of products and services

8.3.1 General

ATANE will continue maintaining an improved design and development processes for its project delivery. For services, design and development planning can address the whole service delivery process.

8.3.2 Design and development planning

For the design and development of products and services, that ATANE shall establish, implement and maintain design and development processes that is appropriate to ensure that subsequent and sequential provision of products and services.

For design and development planning, in determining the stages and controls for design and development, the organization shall consider the following:

a) The nature, duration and complexity of the design and development activities.

Printed copies of this document are not controlled
b) The required process stages, including applicable design and development reviews.
c) The required design and development verification and validation activities.
d) The responsibilities and authorities involved in the design and development process.
e) The internal and external resource needs for the design and development of services and project deliverables.
f) The need to control interfaces between person involved in the design and development.
g) The need for involvement of customers and users in the design and development process.
h) The requirements for subsequent provision of products and services.
i) The level of control expected for the design and development process by customers and other relevant interested parties.
j) The documented information needed to demonstrate that design and development requirements have been met.

8.3.3 Review of the requirements for products and services

8.3.3.1 Design and Development Inputs

The Department Manager in collaboration with the customer shall determine the requirements essential for the delivery of a project within the contracted scope. Department Manager shall consider.

a) Functional and performance requirements
b) Information derived from previous delivered projects
c) Statutory and regulatory requirements
d) Standards or codes of practice of practice that the organization has committed to implements
e) Potential consequences of failure for the delivered project due to the nature of the service.

Inputs for the delivery of a project shall be appropriate and adequate for design and development purposes, and should be complete and unambiguous.

Any conflicts in the design and development inputs shall be resolved at the earliest opportunity and must involve all project stakeholders.

Department Manager or their designee shall ensure that project information are documented and retained as a record of the design and development inputs to the project.

8.3.3.2 Design and Development Controls

ATANE shall apply controls to the design and development process to ensure that:

a) Project deliverables conform to the contractual obligations outlined in contract drawings, specifications and estimates.
b) Reviews are conducted to evaluate project deliverables to ensure project deliverables conform to contractual obligations.
c) Verification activities are conducted to ensure that the project deliverable outputs reflect input requirements.
d) Validation activities are conducted to ensure that project deliverables meet the contract requirements for application and use.

e) Take necessary corrective actions for observations or non-conformances determined during project delivery reviews, or verification and validation activities.

f) Document information regards design and development is retained.

NOTE: Design and development reviews, verification and validation have distinct purposes. They can be conducted separately or in any combination, as suitable for project deliverables and services.

8.3.3.3 Design and Development Outputs:

The Department Manager or their designee shall ensure that project deliverables meet the inputs requirements for design and development and:

a) Conform to the contractual obligations outlined in contract drawings, specifications and estimates.

b) Have documented proof that the acceptance criteria have been reviewed.

c) Verification that the project deliverables and services fit the characteristics of its intended purpose.

d) Project deliverable is safe.

Department Manager shall retain documented information on design and development outputs.

ATANE will continue implementing and improving the established design and development inputs and ensure that these inputs are adequate, complete, and unambiguous.

8.3.4 Changes to requirements for products and services

ATANE will continuously apply controls to the design and development process to ensure that results to be achieved are clearly defined. Design and development reviews are conducted as planned. Verification is conducted to ensure that the design and development outputs have met the design and development input requirements. Validation is conducted to ensure that the resulting project deliverables or services can meet the requirements for the specified application or intended use.

The Department Manager or their designee shall retain documented information on:

a) Changes to project deliverables or services

b) The results of change order reviews.

c) Authorization of change orders

d) Action taken to prevent adverse impact to project deliverables and services

8.4 Control of externally provided processes, products and services

8.4.1 General

Printed copies of this document are not controlled
The procurement process is essential to our organization’s ability to provide our customers with services that meet their requirements. ATANE ensures that all procured services that are incorporated in the final project delivery; conform to ATANE and the customers specified requirements.

ATANE accomplishes this by closely working with a network of external clients, subconsultants, subcontractors and suppliers. Performance and capability are continually assessed through periodic, 3rd party audits, performance data analysis and inspection or verification of procured services.

The type and extent of control applied to our subcontractors and the procured service is dependent upon the effect that the outsourced service may have on our final service. The following considerations are taken in to account by:

1. Ensuring that we understand the capabilities and competencies;
2. Ensuring that we clearly communicate the roles and responsibilities;
3. Defining the quality requirements for the outsourced activity;
4. Selecting and qualifying appropriate subcontractors

It is the responsibility of Top Management and the Department Managers to evaluate and select subcontractors based on their ability to supply services in accordance with specified requirements. Additionally, other internal resources may be called on to assist as required. The criteria for the selection, evaluation and re-evaluation are defined in the Purchasing & Procurement Procedure, while records of the results of evaluations and any necessary actions arising from the evaluation are maintained.

8.4.2 Type and extent of control

Procured services are checked against the scope of work to confirm conformance to the customer requirements. In the event that services are rejected, a non-conformance report is raised and the subcontractor contacted to arrange an appropriate resolution. ATANE has established and implemented a process of inspection to ensure that procured services conform to:

1. Project contract and/or project work order;
2. Project requirements;
3. State, federal and/or international standards.

Where appropriate, risk control measures are applied to outsourced processes. Risk control measures, and their importance, are documented within the purchasing data and clearly communicated to the supplier.

8.4.3 Information for external providers

ATANE uses scope reports, project implementation plans, project work plans to describe the service to be procured. The Department Manager or their designee shall ensure the adequacy of requirements prior to their communication to an external provider:

The Department Manager or their designee shall communicate to external providers its requirements for:

a) The processes, project deliverables and services to be provided;
b) The approval of:

Printed copies of this document are not controlled
1. Project deliverables and services
2. Methods, processes and equipment
3. The release of project deliverables and services
c) Competence, including any required qualifications of persons.
d) The external providers' interaction with ATANE
e) Control and monitoring of the external providers' performance to be applied by the organization:
f) Verification or validation of activities that the organization, or its customer, intends to perform at the external providers' premises.

8.5 Production and service provision

8.5.1 Control of production and service provision

In order to control the planning, administrative support and implementation of work, ATANES policy is to describe the work methods, the controls applied and the records required. The process control activities are quality with many aspects that also relate to quality control. The following controlled conditions are applied where applicable:

- Quality control checks are performed;
- Evidence of completed inspections;
- Detailed process work instructions and specifications for all products;
- Criteria for workmanship and competence.

In cases where special processes are employed where the results of which cannot be easily checked, including any processes where deficiencies become apparent only after the service is in use. Validation demonstrates the ability of these processes to achieve planned results by:

- Defining qualification criteria and approval of special processes prior to use;
- Defining criteria for review and approval of the processes;
- Approval of equipment and qualification of personnel;
- Requirements for records;
- Revalidation.

8.5.2 Identification and traceability

In order to preserve the conformance of project deliverables and services to meet customer requirements during design, development and delivery, ATANE identifies project deliverables and services throughout the project realization process.

- Stored data and materials are identified as to job, description and compliance status;
- All enquiries are noted on the company database;
- Subsequent orders are identified by contract number.

8.5.3 Property belonging to customers or external providers

We identify, verify, protect and maintain customer property provided for use. The Department Manager or Project Manager ensures that lost, damaged or unsuitable customer property is recorded and immediately
reported to the customer.

Customer property can also include customer-owned materials, tools (including packaging), tooling (including test/inspection tooling and equipment), and intellectual property.

When the property of the customer of external parties is lost, damaged or otherwise found to be unsuitable for use, the Project Manager shall report or their designee shall report such condition to the customer or external party for disposition, and retain documented information on what has occurred as project record.

8.5.4 Preservation

With respect to Preservation, the Department Manager or their designee shall manage and control the project during the design and construction processes, and prior to final delivery, in order to ensure the conformity of the finished project deliverables and services to customer requirements before final submission and/or project closeout.

8.5.5 Post-delivery activities

ATANE shall determine customer requirements before final submission and/or project closeout.

In determining the extent of post-delivery activities that are required, the PM shall consider

- Customer requirements;
- Customer party feedback that shall be considered during design and construction.
- Statutory and regulatory requirements related to the product;
- Maintenance and upkeep services that must be consistent with initial construction and installation practice taking into consideration manufacturer specifications, design specifications.
- The nature, use and intended lifetime of project deliverables and services.
- Any additional requirements determined by ATANE.

8.5.6 Control of changes

Changes to the design and development requirements are identified and recorded. Any changes are reviewed, verified, validated and approved. The review of design development changes includes evaluating the effects of those changes upon constituent project deliverables and services already delivered. All results relating to the review of changes are retained as documented information.

8.6 Release of products and services

The Department Manager or their designee has overall responsibility for planning and implementing the verification and validation activities needed to verify that product requirements are met at appropriate stages of the product realization process.

Project deliverables and/or are withheld until verified as fully compliant.

Documented information is retained to indicate the person authorizing the release of the service. Service delivery does not proceed until all compliance have been satisfactorily completed, unless otherwise approved by a relevant authority, and where applicable by the customer.
Measurement and acceptance criteria that are necessary for service acceptance are retained as documented information; subsequent acceptance records form the production documentation evidence which includes the following information:

- Evidence of conformity with the acceptance criteria in the forms of conceptual preliminary and final design drawings, specifications and reports, as applicable.
- Traceability to the Department Manager or designee authorizing the release of information in ATANE

8.7 Control of non-conforming outputs

It is ATANES' policy to detect, control and rectify any aspect of an output that does not conform as quickly and efficiently as possible. Where necessary, any service output that does not conform to requirements is properly identified and controlled to prevent unintended use. The non-conformity is analyzed and the cause(s) are investigated.

Improvement actions are implemented to ensure the non-conformance does not reoccur. Once the non-conforming outputs are corrected, the outputs are then verified for conformity against requirements. Documented information concerning the nature of any non-conformances, the resolving authority, and the resulting corrective actions is retained. Where necessary, details concerning any authorized concessions are documented as evidence of acceptance.
9.1 Monitoring, Measurement, Analysis and Evaluation

ATANE has been regularly implementing monitoring, measurement, analysis and evaluation through ATANE's institutionalization of the Department Quality Management Trends. Department Quality Management Trends would be able to link individual project performance with organizational goals.

Performance review and evaluation is the period where ATANE's QA/ EH&S assesses its accomplishments vis-à-vis the approved plans, programs and projects as well as the allotted budget against its actual expenses for a particular period.

ATANE will continually identify what needs to be monitored and measured. It must also determine the methods for monitoring, measurement, analysis, and evaluation needed to ensure valid results. When the monitoring and measuring must be performed. Also when the results from monitoring and measurement must be analyzed and evaluated. The organization should also evaluate the performance and effectiveness of the quality management system. It must retain appropriate documented information as evidence of the results.

ATANE will ensure regular monitoring of customer perceptions to determine if their needs and expectations have been fulfilled. Some of the methods used for monitoring of customer perceptions include customer surveys and customer feedback on delivered products or services.

ATANE should analyze and evaluate appropriate data and information arising from monitoring and measurement. It will use the results of the analysis to evaluate conformity of products and services, the degree of customer satisfaction, the performance and effectiveness of the quality management system. It will also evaluate if planning has been effectively implemented as well as the effectiveness of actions taken to address risks and opportunities. The performance of external providers and the need for improvements within the quality management system will also be assessed. Statistical techniques will be employed in analyzing the data gathered.

9.2 Internal Audit

In making sure that what is going on in practice is in line with existing policies, processes and procedures, internal audit is carried out. Prior audit results of existing audit program shall be utilized for the planned internal audit of QMS.

An audit for ATANE QMS shall be conducted at least twice a year or as need arises intervals to provide information on whether the quality management system conforms to the organization's own requirements, the requirement of ISO 9001:2015 standards and is effectively implemented and maintained.

ATANE shall plan, establish, implement, and maintain an audit program, which must include frequency, methods, and responsibilities, planning requirements and reporting.

The Senior Vice President of QA/ EH&S shall select lead a designated lead auditor and quality auditors which shall compose the quality team that will maintain and keep the record of certifying auditor qualification.
Identified internal quality auditors shall attend an internal auditor training course to learn good practice and how to interpret and apply ISO 9001 requirements.

Conduct internal audits using the eight (8) management principles of ISO 9001.

Evaluate the intent, implementation and effectiveness of the system.

Verify conformity using the four (4) different ways of auditing, namely, 1) interview personnel; 2) observe operations; 3) review documents ad records; and 4) examine records.

Manage internal audits through the Plan-Do-Act-Check model.

9.3 Management Review

The Management of ATANE will review its QMS at planned intervals to ensure its continuing suitability, adequacy, effectiveness and alignment with its strategic direction.

9.3.1 Inputs

ATANE will plan and carry out management review inputs considering status of actions from previous management reviews, changes in external and internal issues relevant to QMS, the adequacy of resources, opportunities for improvement and the effectiveness of actions taken to address risks and opportunities. ATANE will also consider information on quality performance and effectiveness, including trends in nonconformities and corrective actions, customer satisfaction and feedback from relevant interested parties, monitoring and measurement results, audit results, extent to which quality objectives have been met, process performance, conformity of product and services, the performance of external providers, among others.

9.3.2 Outputs

The primary outputs of management review meetings are management actions that are taken to make changes or improvements to our quality management system. During management review meetings, top management will identify appropriate actions to be taken regarding the following issues:

1. Improvement of the effectiveness of the quality management system and its processes
2. Improvement of product related to customer requirements;
3. Opportunities and risks;
4. Resource needs.

The primary outputs of management review meetings are the actions necessary to make changes or improvements to our quality management system and the provision of resources needed to implement these actions. Responsibilities for required actions are assigned to members of the management review team. Any decisions made during the meeting, assigned actions and their due dates are recorded in the management review minutes.
10.1 General

ATANE upholds its commitment for excellent customer satisfaction. To proactively respond to all internal and external changes, developments and influences, it will continually enhance its Quality Management System in the context of ISO 9001:2015. This approach requires review of relevant data. The data inputs for the improvement process include:

1. Risk and opportunity evaluations;
2. Assessment of the changing needs and expectations of interested parties;
3. The conformity of existing products and services;
4. The effectiveness of our QMS;
5. Subconsultant and/or subcontractor performance;
6. Levels of customer satisfaction, including complaints and feedback;
7. Internal and external audit results;
8. Corrective action and non-conformance rates;

10.2 Nonconformity and Corrective Action

While the Management commits to achieve quality services, it also recognizes possible non-conformity to certain standards in the operation. This deviation may adversely affect service quality and customer satisfaction, and must therefore be addressed immediately with appropriate concrete measures.

10.2.1 Corrective Actions

10.2.1.1 Corrective actions are implemented to address actual nonconformities.

a. Corrective action requests (CAR) may be proposed by any ATANE employee, but all CARs must be authorized by the Department Manager, their designee or assigned Quality Assurance Manager.

b. This is to prioritize and direct resources where corrective actions are most urgent.

10.2.1.2 CARs can be directed to ATANE’s internal departments as well as to its Subconsultant and/or subcontractor of services.

10.2.1.3 Corrective actions may be requested in the following cases:

- Identification of a nonconforming process or work operation;
- A nonconformity identified during a regulatory or third-party audit, or internal audit;
- Customer or regulatory complaint;
- Nonconforming project deliverables and service performed from a subcontractor or subconsultant;
- Identification of any other component, device, process or condition that does not conform to specifications, documented quality system, or requirements of the ISO 9001:2015 or applicable regulations.
Follow-up audits are conducted in accordance with the internal audit process to ensure that effective corrective action is taken and that the action is appropriate to the impact and nature of the problem encountered. In addition, the designated Quality Assurance Manager summarizes and analyzes corrective action data to identify trends in order to assess the overall effectiveness of the corrective action system and to develop related recommendations for improvement.

The resulting corrective actions are reviewed for effectiveness and are reported to the department manager in order to determine if changes to the QMS are required, or whether any new risks or opportunities need to be considered during planning. Documented information concerning the nature of any non-conformances and their resulting corrective actions is retained.

The corrective actions are considered effective if the specific problem was corrected and data indicates that the same or similar problems have not recurred. Results of data analysis and subsequent recommendations are presented to top management for review.

10.3 Documentation

10.3.1 The NCR/CAR documents:
- ATANES Quality Corrective/ Preventive Action (CAPA) Report
- Requests for corrective or preventive action;
- Documentation for implementation of corrective/preventive actions; and
- Any necessary follow-up actions.
- Non-Conformance Registry/ Corrective Action Request Logs

10.3.2 NCR/CAR documentation will be stored as ATANE records; and be held for review and maintenance.

10.3.3 Data will be posted for staff to view, and be used during ATANE’s Internal Audit, Management Review process and Quality Meeting reviews.

10.3.4 Data and observations will be released for department managers to review, and be used during ATANE internal audits, management review process, and quality meeting reviews.

10.4 Continual Improvement

ATANE shall pursue its commitment for continual improvement in all its services to satisfy the evolving needs of its customers and other stakeholders. Regular audits and checking compliance with the QMS policies, objectives, and standards shall be the utmost activity to ensure continual improvement. Monitoring the implementation of all processes during quality audit, correcting nonconformities and other preventive actions will be a top priority action of the QMR and concerned department heads.

Significant changes might necessitate the review and updating of the existing Quality Manual in order for ATANE to attain its end-goal of moving towards water service excellence.
This Quality Manual shall be revised when the following situations arise:

- Change in scope of certification
- Change in the management and/or organizational structure;
- Change in the core business process.

Comments and suggestions may be communicated to the Quality Management Representative in written form to ensure that his/her feedback will be considered in updating/revising the manual.
Schedule
References
References

Mr. John N. Ernst
Ocean County, NJ
County Engineer
(732) 929-2130
OCEngineering@co.ocean.nj.us

Eddie Chu
NYC School Construction Authority
Design Manager
(718) 752-5524
Echu@nycsca.org

Dana L. Parker
Philadelphia Housing Authority
Planning & Development
(215) 684-4082

William E. Kendig
Philadelphia Parking Authority
Director of Construction Management & Capital Projects
(215) 683-9951

Steve Vecchione, P.E.
Port Authority of New York & New Jersey
Structural Engineer
(201) 395-3592
svecchione@panynj.gov

Mary Wheeler
Philadelphia Parking Authority
Manager of Contracts Administration
(215) 683-9665
m wheeler@philapark.org

Hany Shenouda, PE
NYC Housing Authority (NYCHA)
Deputy Director, Engineering
Capital Projects, Design Dept.
(718) 730-8137
Hany.Shenouda@nycha.nyc.gov
Forms
PROPOSAL CHECKLIST

RFP NO.: P-43-2019

Items required with proposal
(Owner’s checkmarks)

A. FAILURE TO SUBMIT ANY OF THESE ITEMS WITH THE PROPOSAL IS MANDATORY CAUSE FOR REJECTION

- Proposal (unbound original) (four add’l copies requested)
- Statement of Ownership
- Non-Collusion Affidavit
- Iran Disclosure Form
- Other:

B. ITEMS PREFERRED WITH THE PROPOSAL, BUT MANDATORY AT THE TIME INDICATED

- Copy of the N.J. Business Registration Certificate or other acceptable proof of N.J. Business Registration for Consultant – prior to award of contract
- Copy of the N.J. Business Registration Certificate or other acceptable proof of N.J. Business Registration for proposed subconsultant(s) – prior to commencement of work, if applicable
- References – deadline set by the County, on notice to the Consultant

C. OPTIONAL ITEM

- Equal Employment Opportunity Questionnaire

PRINT NAME OF CONSULTANT: ATANE Engineers, Architects, and Land Surveyors, P.C.

SIGNED BY: Jaime Vasquez

PRINT NAME AND TITLE: Jaime Vasquez, Vice President

DATE: 3/13/2020

COMPLETE & SUBMIT THIS CHECKLIST WITH THE PROPOSAL

Rev. 4/2019
CONFLICT OF INTEREST CERTIFICATION

The undersigned Consultant certifies to the County of Monmouth (the "County") that we know of no circumstances that would constitute a conflict of interest, financial or otherwise, between our firm or any of its employees and the County or any of its members, or with the interests of the County in general. We further certify that we know of no circumstances or relationships between our firm and any of its employees or any third parties that do or would present an actual or apparent conflict of interest or otherwise compromise our judgment and independence in properly performing services for the County.

We acknowledge that this shall be a continuing certification, to be supplemented if and when appropriate during the term of the Agreement.

We certify that the foregoing statements made by us are true. We are aware that if any of the foregoing statements made by us are willfully false, we are subject to punishment.

Name of Consultant: ATANE Engineers, Architects and Land Surveyors, P.C.

Signed by: [Signature]

Name of Signer: Jaime Vasquez

Title of Signer: Vice President

Date: 3/13/2020
STATEMENT OF OWNERSHIP
(N.J.S.A. 52:25-24.2)

The CONSULTANT is (check one):
☐ Partnership ☑ Corporation ☐ Sole Proprietorship ☐ Limited Liability Partnership
☐ Limited Liability Corporation ☐ Limited Partnership ☐ Subchapter S Corporation ☐ Other, Please List ________________________________

I certify that:
☐ No individual person or entity owns a 10% or greater interest in the Consultant.

☑ The list below contains the names and addresses of all individuals/entities holding 10% or greater interest in the Consultant. If a parent entity holding 10% or more is a publicly traded entity, then the Consultant in complying with N.J.S.A. 52:25-24.2 may submit the name and address of each publicly traded entity, and the name and address of each person holding 10% or more interest in the publicly traded entity as of the last annual filing with the Security Exchange Commission (SEC), or foreign equivalent.

Name: Quaiser Hashmi, P.E
Address: [Redacted]

Name: ________________________________
Address: ________________________________

Name: ________________________________
Address: ________________________________

☐ Check here if additional sheets are attached.

NOTE: If an entity owns a 10% or greater interest in the Consultant, list all owners of 10% or greater interest for each such entity. Repeat the process of disclosure as necessary for each tier or level of ownership until the name and address of each individual person who owns a 10% or greater interest in each listed entity has been disclosed.

Publicly Traded Parent Company Disclosure:
Provide the Website (URL) providing the last annual Security Exchange Commission (SEC) filing, or foreign equivalent:

The requested information is available on the following page number(s) of the SEC, or foreign equivalent, filing:

CONSULTANT: ATANE Engineers, Architects and Land Surveyors, P.C.
SIGNED BY: ____________________________
PRINT NAME & TITLE: Quaiser Hashmi, P.E. CEO , President
DATE: 3/13/2020

(Revised 10/2018)
NON-COLLUSION AFFIDAVIT
(N.J.S.A. 52:34-15)

STATE OF New Jersey)
COUNTY OF Middlesex)

Re: PROFESSIONAL ARCHITECTURAL AND ENGINEERING SERVICES FOR A FACILITIES CONDITION ASSESSMENT AT THE MONMOUTH COUNTY SPECIAL SERVICES COMPLEX IN THE TOWNSHIP OF FREEHOLD

I, Jaime Vasquez ________________________________ (name of signer) of full age, being duly sworn according to law, on my oath depose and say:

I am the Vice President ___________________________ (title) of ATANE Engineers, Architects and Land Surveyors, P.C (name of Consultant), a prospective Consultant for the above named project, and that I executed the said proposal with full authority so to do; that the prospective Consultant has not, directly or indirectly, entered into any agreement, participated in any collusion, or otherwise taken any action in restraint of free, competitive bidding in connection with the above named project; and that all statements contained in the proposal and in this affidavit are true and correct, and made with full knowledge that the County of Monmouth relies upon the truth of the statements contained in the proposal and in the statements contained in this affidavit in awarding a contract for the project.

I further warrant that no person or selling agency has been employed or retained to solicit or secure such contract upon an agreement or understanding for a commission, percentage, brokerage or contingent fee, except bona fide employees or bona fide established commercial or selling agencies maintained by my firm for the purpose of securing business.

Signed: X Jaime Vasquez

Subscribed and sworn before me
this 13 day of March, 2000.
Notary signature

My Commission expires:

WILMA ARIAS
NOTARY PUBLIC OF NEW JERSEY
My Commission Expires 3/15/2024

(Revised 9/2018)
County of Monmouth, State of New Jersey
Division of Purchasing
DISCLOSURE OF ENERGY SECTOR INVESTMENT ACTIVITIES IN IRAN
New Jersey Public Law 2012, Chapter 25

Bidder / Consultant: ATANE Engineers, Architects and Land Surveyors, P.C.

PART 1 – CERTIFICATION – CHECK THE APPROPRIATE BOX:

A. ☐ I certify that neither the Bidder / Consultant nor any of the Bidder’s / Consultant’s parents, subsidiaries, or affiliates, as defined in C.52:32-56(e), is on the “Chapter 25 List” created and maintained by the New Jersey Department of the Treasury, as a person or entity engaging in the energy sector investment activities in Iran described in C.52:32-56(f). The Chapter 25 List may be found at http://www.state.nj.us/treasury/purchase/pdf/Chapter25List.pdf.

OR

B. ☐ The Bidder / Consultant and/or one or more of its parents, subsidiaries or affiliates is a person or entity on the Chapter 25 List referred to above. A detailed and precise description of the relevant activities of the listed Bidder / Consultant and/or listed parents, subsidiaries or affiliates is provided in Part 2 below.

PART 2 – ADDITIONAL INFORMATION – COMPLETE PART 2 ONLY IF B. IN PART 1 IS CHECKED:
The following is an accurate and precise description of the energy sector investment activities in Iran of the Bidder / Consultant and/or listed parents, subsidiaries or affiliates, on the Chapter 25 List (attach additional pages as necessary to make full disclosure):

Name of Person(s) or Entity(ies) on the Chapter 25 List: __

Relationship to Bidder / Consultant: __

Description of Activities: ___

Duration of Engagement: ________________________ Anticipated Cessation Date: ______________________

Bidder / Consultant Contact Name: __________________________________ Contact Phone Number: ______________________

☐ Check here if additional pages are attached and state number of attached pages: _______ (Number of pages attached.)

CERTIFICATION FOR PART 1 AND, IF APPLICABLE, PART 2: I, being of full age, hereby certify that the foregoing information and any attachments hereto are to the best of my knowledge true and complete. I certify that I am authorized to execute this certification on behalf of the Consultant. I acknowledge that the County of Monmouth will rely on the information contained herein and thereby acknowledge that I and the Bidder / Consultant are under a continuing obligation from the date of this certification through the completion of any contracts with the County to notify the County in writing of any changes to the answers or information contained herein.

I certify that the foregoing statements made by me are true. I am aware that if any of the foregoing statements made by me is willfully false, I am subject to punishment and the Bidder / Consultant is subject to the penalties stated in C. 52:32-59 and C. 40A:11-2.1.

Full Name (Print) Jaime Vasquez
Title: Vice President
Signature: ___________________________ Date: 3/13/2020

(Revised 8/2015)
EQUAL EMPLOYMENT OPPORTUNITY

QUESTIONNAIRE ON

PROCUREMENT AND SERVICE CONTRACT

YES OR NO

1. Our Company has a current federal affirmative action plan approval. If yes, please submit a copy of said approval.

2. Our Company has a New Jersey State Certificate of Employee Information Report. If yes, please include copy. X

3. We do not have a current Federal Plan Approval or State Certificate. We will complete and file Form AA302 on line at www.state.nj.us/treasury/contract_compliance and provide a “filed” copy to the County.

PLEASE NOTE:
ONE OF THE ABOVE MUST BE SUBMITTED. IF YOU ARE THE SUCCESSFUL CONSULTANT AND RECEIVE THE AWARD. THIS IS REGARDLESS OF THE NUMBER OF EMPLOYEES YOU HAVE.

NAME: Jaime Vasquez

SIGNATURE: X

TITLE: Vice President

DATE: 3/13/2020

THIS FORM SHOULD BE COMPLETED, SIGNED AND RETURNED WITH YOUR PROPOSAL.

(Revised 2/2017)
This is to certify that the contractor listed below has submitted an Employee Information Report pursuant to N.J.A.C. 12:12-1 et seq. and the State Treasurer has approved said report. This approval will remain in effect for the period of 15 APR 2017 to 15 APR 2020.

ATANE ENGINEERS/ARCHITECTS AND LAND SURVEYORS
485 E. ROUTE 1 SOUTH SUITE 200
ISELIN NJ 08830

ELIZABETH M. NUGO
State Treasurer
08/22/18

Taxpayer Identification# [Redacted]

Dear Business Representative:

Congratulations! You are now registered with the New Jersey Division of Revenue.

Use the Taxpayer Identification Number listed above on all correspondence with the Divisions of Revenue and Taxation, as well as with the Department of Labor (if the business is subject to unemployment withholdings). Your tax returns and payments will be filed under this number, and you will be able to access information about your account by referencing it.

Additionally, please note that State law requires all contractors and subcontractors with Public agencies to provide proof of their registration with the Division of Revenue. The law also amended Section 82 of the Casino Control Act, which deals with the casino service industry.

We have attached a Proof of Registration Certificate for your use. To comply with the law, if you are currently under contract or entering into a contract with a State agency, you must provide a copy of the certificate to the contracting agency.

If you have any questions or require more information, feel free to call our Registration Hotline at (609)262-9292.

I wish you continued success in your business endeavors.

Sincerely,

[Signature]

James J. Fruscione
Director
New Jersey Division of Revenue

STATE OF NEW JERSEY
BUSINESS REGISTRATION CERTIFICATE

TAXPAYER NAME:
ATANE ENGINEERS, ARCHITECTS AND LAND SUR

ADDRESS:
485 E RT 1 S. STE 200
ISELIN NJ 08830

EFFECTIVE DATE:
06/12/00

TRADE NAME:

SEQUENCE NUMBER:
0057248

ISSUANCE DATE:
08/22/18

[Signature]
Director
New Jersey Division of Revenue
Taxpayer Identification# [Redacted]

Dear Business Representative:

Congratulations! You are now registered with the New Jersey Division of Revenue.

Use the Taxpayer Identification Number listed above on all correspondence with the Divisions of Revenue and Taxation, as well as with the Department of Labor (if the business is subject to unemployment withholdings). Your tax returns and payments will be filed under this number, and you will be able to access information about your account by referencing it.

Additionally, please note that State law requires all contractors and subcontractors with Public agencies to provide proof of their registration with the Division of Revenue. The law also amended Section 92 of the Casino Control Act, which deals with the casino service industry.

We have attached a Proof of Registration Certificate for your use. To comply with the law, if you are currently under contract or entering into a contract with a State agency, you must provide a copy of the certificate to the contracting agency.

If you have any questions or require more information, feel free to call our Registration Hotline at (609)292-9292.

I wish you continued success in your business endeavors.

Sincerely,

James J. Fruscione
Director
New Jersey Division of Revenue

STATE OF NEW JERSEY
BUSINESS REGISTRATION CERTIFICATE

TAXPAYER NAME:
PROJECT MANAGEMENT TECHNOLOGIES, INC.

ADDRESS:
714 EAST MAIN ST., UNIT 2C
MOORESTOWN NJ 08057

TRADE NAME:
PRIMECH INC

SEQUENCE NUMBER:
0073279

EFFECTIVE DATE:
08/29/85

ISSUANCE DATE:
02/05/20

Director
New Jersey Division of Revenue
STATE OF NEW JERSEY
BUSINESS REGISTRATION CERTIFICATE

TAXPAYER NAME:
FRENCH & PARRELLO ASSOCIATES P A

ADDRESS:
1800 ROUTE 34, STE 101
WALL, NJ 07719
EFFECTIVE DATE:
04/01/74

TRADE NAME:
FRENCH AND PARRELLO ASSOCIATES P A

SEQUENCE NUMBER:
0102641

ISSUANCE DATE:
11/02/05

[Signature]
Director
To the Board of Chosen Freeholders of the County of Monmouth:

THE UNDERSIGNED HEREBY DECLARES THAT
I (WE) HAVE CAREFULLY EXAMINED THE SPECIFICATIONS.
I (WE) HEREBY CERTIFY PRICES QUOTED ARE IN ACCORDANCE
WITH YOUR REQUIREMENTS.

Company Name: ATANE Engineers, Architects and Land Surveyors, P.C.
(Print)

Preparer’s Name: Jaime Vasquez
(Print)

Signature:

Address: 485 Route 1 South, Iselin NJ, 08830

Telephone No.: (732) 744-1490

Fax No.:

E-Mail Address: Jvasquez@ataneconsulting.com

(This should be the email where Contracts would be sent)

Contact Person: Jaime Vasquez

FEIN:

(Federal Employee ID)

(Revised 2/2017)
PROFESSIONAL ARCHITECTURAL AND ENGINEERING SERVICES FOR A FACILITIES CONDITION ASSESSMENT

at the Monmouth County Special Services Complex

in the Township of Freehold

P-43-2018

Submitted by:

ATANE
May 19, 2020

Helen P. Fiore, Director of Purchasing
Division of Purchasing, County of Monmouth
Hall of Records, 3rd Floor
1 East Main Street
Freehold, NJ 07728

Dear Ms. Fiore:

ATANE is very pleased to submit our Cost Proposal for Professional Architectural and Engineering Services for Facilities Condition Assessment at the Monmouth County Special Services Complex in the Township of Freehold RFP:P-43-2018.

I will serve as the duty authorized representative of ATANE for all matters pertaining to this contract. We want to thank you in advance for your consideration of our firm. If you have any questions, comments, concerns, or need additional information, please feel free to contact me at; (212) 747-1997 x555 or javasquez@ataneconsulting.com

Respectfully,
ATANE

Jaime Vasquez, LEED AP
Vice President
Project Cost & Work Hour Proposal Form

TASK	**DESCRIPTION**	**P7H Project Principal**	**P7T Project Manager**	**P7V Sr. Architect Engineer**	**P7W Architect Engineer**	**P7H Jr. Architect Engineer**	**ET3 Arch/Eng. Sr. Designer**	**ET4 Designer**	**ET3 CAD Draft**	**Team Size**	**TOTAL HOURS**	**LABOR COST BY TASK (See Note 3)**
I.A | Assessment of the Building | 4 | 16 | 72 | 60 | 48 | 32 | 120 | 4 | 336 | $38,481.35 |
I.B | Feasibility Study | 4 | 16 | 32 | | | | | | | | $6,608.52 |
I.C | Strategic Plan | 4 | 16 | 16 | 24 | | | | | | | $8,340.35 |
I.D | Final PCA Report (Compilation) | 4 | 24 | | 8 | 16 | 32 | | | | | $6,615.25 |
I.E | Presentation of the PCA | 4 | 8 | 8 | | 4 | 4 | 28 | | | | $4,098.00 |
2.A | Pre-Design and Programming for Voting Machines | 4 | 16 | 16 | | | | | | | | $6,907.75 |
2.B | Schematic Design and Documentation for Voting Machines | 4 | 16 | 48 | | | | | | | | $15,081.35 |

(a) Man-hours | 28 | 112 | 292 | 84 | 0 | 36 | 0 | 192 | 24 | 72 |
(b) Direct Salary Rates (See Note 2) | $84.13 | $70.00 | $63.00 | $41.00 | $81.20 | $31.25 | $55.00 | $27.00 | $22.00 | $0.00 |
(c) Multiplier (See Note 2) | 2.6000 |
TOTAL LABOR COST (a,b,c) | $5,124.66 | $293,844.00 | $31,449.60 | $10,264.80 | $0.00 | $3,900.00 | $4,570.00 | $0.00 | $10,982.40 | $1,312.80 | $85,054.26 |

DIRECT EXPENSES

| SUB-CONSULTANTS (Specift Tasks) | | | | | | | | | | | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
French Partners Associates (Land Survey, Site/Civil) | | | | | | | | | | | |
Remanent, PFP, FPA | $11,790.00 |
Primtech (Cost Estimating) | $9,211.00 |
SUBTOTAL - Sub-Consultants	$70,621.24
Printing	$1,200.00
Postage/Shipping	$200.00

TOTAL LABOR COST	$86,054.26
TOTAL DIRECT EXPENSES	$71,921.24
TOTAL PROJECT COST	$160,975.30

NOTE:
- 1. Direct Salary Rate should not include employee benefits.
- 2. Multiplier includes overhead, profit and employee benefits.
- (Only one multiplier shall be used for all employees).
- 3. Labor Cost By Task = (Man-hours) x (Direct Salary Rate/ Multiplier)
- 4. Direct expenses will be billed at invoice costs (no profit or overhead)
- 5. Overhead shall include communication, lodging, meals, and indirect expenses.